

# Cheltenham Borough Council

Detailed Modelling Study

August 2022



Move Forward with Confidence

THIS PAGE IS LEFT BLANK INTENTIONALLY



# **Document Control Sheet**

|                        |                             | l                                                                                                  | dentification                    |                                                          |            |                 |
|------------------------|-----------------------------|----------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|------------|-----------------|
| Client                 |                             | Cheltenham Bo                                                                                      | orough Council                   |                                                          |            |                 |
| Documen                | t Title                     | Detailed Model                                                                                     | ling Study                       |                                                          |            |                 |
| Bureau V               | Veritas Ref No. AIR10276099 |                                                                                                    |                                  |                                                          |            |                 |
|                        |                             | Co                                                                                                 | ontact Details                   |                                                          |            |                 |
| Company                | Name                        | Bureau Veritas UK                                                                                  |                                  | Chelter                                                  | ham Boro   | ugh Council     |
| Contact N              | lame                        | Daniel Clampin                                                                                     |                                  | Alex Ma                                                  | ason       | ·               |
| Position               |                             | Senior Air Quality C                                                                               | Consultant                       | Enviror                                                  | mental He  | ealth Officer   |
| Address                |                             | 2 <sup>nd</sup> Floor, Atlantic House<br>Atlas Business Park<br>Simonsway<br>Manchester<br>M22 5PR |                                  | Municipal Offices<br>Promenade<br>Cheltenham<br>GL50 9SA |            |                 |
| Telephon               | е                           | 0161 446 4600                                                                                      |                                  | 07920 :                                                  | 560600     |                 |
| e-mail                 |                             | daniel.clampin@bu                                                                                  | laniel.clampin@bureauveritas.com |                                                          | ason@che   | eltenham.gov.uk |
| Websites               |                             | www.bureauveritas                                                                                  | ww.bureauveritas.co.uk           |                                                          | www.chelte | enham.gov.uk/   |
|                        |                             |                                                                                                    | configuration                    |                                                          |            |                 |
| Version                | Date                        | Author                                                                                             | Reason for Issue                 | Reason for Issue/Summary o<br>Changes                    |            | Status          |
| 1.0                    | 27/8/21                     | A Spence                                                                                           | Issued to client                 | for comm                                                 | nent       | Draft           |
| Name         Job Title |                             |                                                                                                    |                                  | Signature                                                |            |                 |

|             |                                |                                     | eignataite  |
|-------------|--------------------------------|-------------------------------------|-------------|
| Prepared By | A Spence                       | Assistant Air Quality<br>Consultant | alex Spence |
| Approved By | Approved By D Clampin Senior C |                                     | h L.        |

**Commercial In Confidence** 

© Bureau Veritas UK Limited

The copyright in this work is vested in Bureau Veritas UK Limited, and the information contained herein is confidential. This

work, either in whole or in part, may not be reproduced or disclosed to others or used for any purpose, other than for internal client evaluation, without Bureau Veritas' prior written approval.

Bureau Veritas UK Limited, Registered in England & Wales, Company Number: 01758622

Registered Office: Suite 308 Fort Dunlop, Fort Parkway, Birmingham B24 9FD

Disclaimer

This Report was completed by Bureau Veritas on the basis of a defined programme of work and terms and conditions agreed with the Client. Bureau Veritas confirms that in preparing this Report it has exercised all reasonable skill and care taking into account the project objectives, the agreed scope of works, prevailing site conditions and the degree of manpower and resources allocated to the project.

Bureau Veritas accepts no responsibility to any parties whatsoever, following the issue of the Report, for any matters arising outside the agreed scope of the works.

This Report is issued in confidence to the Client and Bureau Veritas has no responsibility to any third parties to whom this Report may be circulated, in part or in full, and any such parties rely on the contents of the report solely at their own risk. Unless specifically assigned or transferred within the terms of the agreement, the consultant asserts and retains all Copyright, and other Intellectual Property Rights, in and over the Report and its contents.

Any questions or matters arising from this Report should be addressed in the first instance to the Project Manager

# THIS PAGE IS LEFT BLANK INTENTIONALLY





#### Table of Contents

| Ex                                              | ecu                                    | utive Summary                                                                                                                                                                                                                                                                                                            | ii                                                                   |
|-------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1                                               |                                        | Introduction                                                                                                                                                                                                                                                                                                             | 1                                                                    |
| 1.1                                             |                                        | Scope of Assessment                                                                                                                                                                                                                                                                                                      | 1                                                                    |
| 2                                               |                                        | Air Quality – Legislative Context                                                                                                                                                                                                                                                                                        | 3                                                                    |
|                                                 | 2.1                                    | Air Quality Strategy                                                                                                                                                                                                                                                                                                     | 3                                                                    |
| 2.2                                             |                                        | Local Air Quality Management (LAQM)                                                                                                                                                                                                                                                                                      | 5                                                                    |
| 3                                               |                                        | Review and Assessment of Air Quality Undertaken by the Council                                                                                                                                                                                                                                                           | 6                                                                    |
|                                                 | 3.1                                    | Local Air Quality Management                                                                                                                                                                                                                                                                                             | 6                                                                    |
|                                                 | 3.2                                    | 2 Review of Air Quality Monitoring                                                                                                                                                                                                                                                                                       | 6                                                                    |
| 3.3                                             |                                        | Defra Background Concentration Estimates                                                                                                                                                                                                                                                                                 | 12                                                                   |
| 4                                               |                                        | Assessment Methodology                                                                                                                                                                                                                                                                                                   | 13                                                                   |
|                                                 | 4.1                                    | Traffic Inputs                                                                                                                                                                                                                                                                                                           | 13                                                                   |
|                                                 | 4.2                                    | 2 General Model Inputs                                                                                                                                                                                                                                                                                                   | 15                                                                   |
|                                                 | 4.3                                    | Sensitive Receptors                                                                                                                                                                                                                                                                                                      | 16                                                                   |
| 4.4                                             |                                        | Model Outputs                                                                                                                                                                                                                                                                                                            |                                                                      |
|                                                 |                                        |                                                                                                                                                                                                                                                                                                                          |                                                                      |
| 4.5                                             |                                        | Uncertainty                                                                                                                                                                                                                                                                                                              |                                                                      |
|                                                 |                                        | Uncertainty<br>Uncertainty in $NO_x$ and $NO_2$ Trends                                                                                                                                                                                                                                                                   |                                                                      |
| 4.5                                             |                                        | •                                                                                                                                                                                                                                                                                                                        | 18                                                                   |
| 4.5<br>4.6<br>5                                 |                                        | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results                                                                                                                                                                                                                                                     | 18<br>20                                                             |
| 4.5<br>4.6<br>5                                 |                                        | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations                                                                                                                                                                                                                          | <b>18</b><br><b>20</b><br>20                                         |
| 4.5<br>4.6<br>5                                 | 5.1                                    | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance                                                                                                                                                                                          | <b>18</b><br><b>20</b><br>20<br>25                                   |
| 4.5<br>4.6<br>5                                 | 5.1<br>5.2<br>5.3                      | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance                                                                                                                                                                                          | <b>18</b><br>20<br>25<br>25                                          |
| 4.5<br>4.6<br>5                                 | 5.1<br>5.2<br>5.3                      | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance<br>Source Apportionment                                                                                                                                                                  |                                                                      |
| 4.5<br>4.6<br>5                                 | 5.1<br>5.2<br>5.3                      | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance<br>Source Apportionment<br>Conclusions and Recommendations                                                                                                                               |                                                                      |
| 4.5<br>4.6<br>5<br>6<br>6.1                     | 5.1<br>5.2<br>5.3                      | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance<br>Source Apportionment<br>Conclusions and Recommendations<br>Predicted Concentrations                                                                                                   | 18<br>20<br>20<br>25<br>25<br>31<br>31<br>31<br>32                   |
| 4.5<br>4.6<br>5<br>6<br>6.1<br>6.2<br>6.3       | 5.1<br>5.2<br>5.3                      | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance<br>Source Apportionment<br>Conclusions and Recommendations<br>Predicted Concentrations<br>Source Apportionment                                                                           | 18<br>20<br>25<br>25<br>31<br>31<br>32<br>32                         |
| 4.5<br>4.6<br>5<br>6<br>6.1<br>6.2<br>6.3<br>Ap | 5.1<br>5.2<br>5.3                      | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance<br>Source Apportionment<br>Conclusions and Recommendations<br>Predicted Concentrations<br>Source Apportionment<br>Future Recommendations                                                 | 18<br>20<br>25<br>25<br>31<br>31<br>32<br>32<br>33                   |
| 4.5<br>4.6<br>5<br>6<br>6.1<br>6.2<br>6.3<br>Ap | 5.1<br>5.2<br>5.3<br><b>per</b>        | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance<br>Source Apportionment<br>Conclusions and Recommendations<br>Predicted Concentrations<br>Source Apportionment<br>Future Recommendations                                                 | 18<br>20<br>20<br>25<br>25<br>31<br>31<br>31<br>32<br>32<br>33<br>33 |
| 4.5<br>4.6<br>5<br>6<br>6.1<br>6.2<br>6.3<br>Ap | 5.1<br>5.2<br>5.3<br><b>per</b><br>Apr | Uncertainty in NO <sub>x</sub> and NO <sub>2</sub> Trends<br>Results<br>Modelled Concentrations<br>Estimated Year of Compliance<br>Source Apportionment<br>Conclusions and Recommendations<br>Predicted Concentrations<br>Source Apportionment<br>Future Recommendations<br>ndices<br>pendix A – ADMS Model Verification | 18<br>20<br>20<br>25<br>25<br>31<br>31<br>32<br>32<br>33<br>34<br>46 |



#### List of Tables

| Table 2.1 – Examples of where the Air Quality Objectives should apply                                             |         |
|-------------------------------------------------------------------------------------------------------------------|---------|
| Table 2.2 – Relevant AQS Objectives for the Assessed Pollutants in England                                        |         |
| Table 3.1 – Automatic Monitor CM1                                                                                 |         |
| Table 3.2 – Automatic Monitor CM1: NO2 Annual Mean Concentrations                                                 | 7       |
| Table 3.3 – Automatic Monitor CM1: Number of NO <sub>2</sub> Hourly Means Exceedances                             |         |
| Table 3.4 – Cheltenham Borough Council LAQM Diffusion Tube Monitoring                                             | 7       |
| Table 3.5 – Cheltenham Borough Council LAQM Diffusion Tube Monitoring                                             |         |
| Table 4.1 – Number of Receptors Included at Various Heights                                                       | . 16    |
| Table 5.1 – Summary of 2019 Modelled Receptor Results NO2                                                         | . 20    |
| Table 5.2 – Projected Annual Mean NO <sub>2</sub> Concentrations                                                  |         |
| Table 5.3 – Detailed Source Apportionment of NO <sub>x</sub> Concentrations                                       | . 29    |
| Table 5.4 – Detailed Source Apportionment of NO <sub>x</sub> Concentrations                                       |         |
|                                                                                                                   |         |
| Table A.1 – Local Monitoring Data Available for Model Verification                                                | . 35    |
| Table A.2 – Comparison of Unverified Modelled and Monitored NO <sub>2</sub> Concentrations                        | . 36    |
| Table A.3 – Data Required for Adjustment Factor Calculation – Zone 1                                              |         |
| Table A.4 – Zone 1 Adjustment Factor and Comparison of Verified Results against Monitoring                        |         |
| Results                                                                                                           | . 40    |
| Table A.5 – Data Required for Adjustment Factor Calculation – Zone 2                                              |         |
| Table A.6 – Zone 2 Adjustment Factor and Comparison of Verified Results against Monitoring                        | • • • • |
| Results                                                                                                           | 43      |
| r toouno                                                                                                          | . 10    |
| Table B.1 – Defra Background Pollutant Concentrations Covering the Modelled Domain                                | 46      |
|                                                                                                                   | . 10    |
| Table C. 1 – Traffic Data used in the Detailed Assessment                                                         | . 47    |
|                                                                                                                   |         |
| Table D.1 – Predicted 2019 Annual Mean Concentrations of NO2, PM10 and PM2.5 at Discrete                          |         |
| Receptor Locations                                                                                                | . 56    |
| List of Figures                                                                                                   |         |
|                                                                                                                   |         |
| Figure 3.1 - Cheltenham Borough Council AQMA Boundary                                                             | 10      |
| Figure 3.2 – Local Monitoring Locations                                                                           | 11      |
| Figure 4.1 – City Wide Modelled Road Network                                                                      |         |
| Figure 4.2 – Wind rose for Gloucestershire Data 2019                                                              |         |
| Figure 4.3 – Receptor Locations Considered in the Assessment                                                      |         |
| Figure 5.1 – Location of Discrete Receptors Predicted to be within 10% or Above the NO <sub>2</sub> Annual        | /       |
| Mean AQS Objective                                                                                                | 22      |
|                                                                                                                   | . 22    |
| Figure A.1 – Verification Zones                                                                                   | 38      |
| Figure A.2 – Zone 1 Comparison of the Modelled Road Contribution NO <sub>x</sub> versus Monitored Road            | . 50    |
| Contribution NO <sub>x</sub>                                                                                      | 40      |
| Figure A.3 – Zone 1 Comparison of the Verified Modelled Total NO <sub>2</sub> versus Monitored NO <sub>2</sub>    |         |
| Figure A.4 – Zone 2 Comparison of the Modelled Road Contribution NO <sub>x</sub> versus Monitored NO <sub>2</sub> | . 41    |
| Contribution NO <sub>x</sub>                                                                                      | 12      |
| Figure A.5 – Zone 2 Comparison of the Verified Modelled Total NO <sub>2</sub> versus Monitored NO <sub>2</sub>    |         |
| Figure A.5 – Zone Z comparison of the vernied wodelied rotal NO2 versus wohitofed NO2                             | . 44    |



# **Executive Summary**

#### **Purpose of Assessment**

Bureau Veritas has been commissioned by Cheltenham Borough Council (the Council) to complete an updated Air Quality Action Plan (AQAP) for the Council's new Air Quality Management Area (AQMA). Currently there is one AQMA within Cheltenham, declared as a result of exceedances of the 40  $\mu$ g/m<sup>3</sup> annual mean objective for Nitrogen Dioxide (NO<sub>2</sub>). This AQMA encompasses a continuous stretch of road, spanning A4019 Tewkesbury Road, A4019 Poole Way and A4019 Swindon Road – north of the Town Centre. The aim of this Detailed Modelling Study is to increase the Councils' understanding of pollutant concentrations within Cheltenham, in order to provide technical input into the updated AQAP.

This AQMA was declared in September 2020, in response to an assessment undertaken by Bureau Veritas in 2019 which evaluated the monitored NO<sub>2</sub> annual mean exceedances across Cheltenham. This study demonstrated that exceedances had become more localised to an area north of the town centre and, based on these findings, the previous borough-wide AQMA was revoked, and the new AQMA declared in order to provide a focus for the application of a more targeted set of measures.

In order to provide technical input into an updated AQAP that will cover the area within the revised AQMA boundary, the air quality modelling completed for the 2019 detailed assessment (which used 2018 data) has been updated to account for 2019 traffic data, 2019 monitoring data and the latest Local Air Quality Management (LAQM) tools. While data is now available for 2020, a baseline 2019 year has been maintained so as to not take account of any data which may be significantly different from normal traffic years in 2020 as a result of the COVID-19 pandemic.

The updated Detailed Modelling Assessment focusses on the road network across Cheltenham to establish any changes in the spatial extent of  $NO_2$  concentrations in order to identify any areas that are above, or within 10%, of the AQS annual mean objective. The area was modelled using the advanced atmospheric dispersion model ADMS-Roads (Version 5.0.0.1) and latest emissions from the Emissions Factors Toolkit (Version 10.1), with annual mean  $NO_2$  concentration outputs produced at 249 discrete receptor locations, and across a borough-wide receptor grid.

#### **Assessment Findings**

Results show that the NO<sub>2</sub> annual mean AQS objective is observed to be exceeded at a total of 14 (5.6%) receptor locations, with 26 (10.4%) further locations within 10% of the objective. As expected, all discrete receptor locations which report annual mean NO<sub>2</sub> concentrations to be above or within 10% of the AQS objective, are located within the existing AQMA, or are limited to roadside locations of junctions where key arterial roads meet.

The highest annual mean concentrations of NO<sub>2</sub> was recorded at Receptor 60 with a concentration of 56.7 $\mu$ g/m<sup>3</sup>. Receptor 60 is located within the AQMA, along a façade of a residential property which immediately fronts onto a stretch of the A4019 – High Street, susceptible to congestion due to the convergence of high capacity and town centre roads (M5, A4019 – Tewkesbury Road, A4019 – High Street, A4019 – Swindon Road and High Street). The junction's role as a major strategic connection within the region is believed to be the cause of the elevated NO<sub>2</sub> annual mean concentrations predicted at Receptor 60.

The empirical relationship given in LAQM.TG(16)<sup>1</sup> states that exceedances of the 1-hour mean objective for NO<sub>2</sub> are only likely to occur where annual mean concentrations are  $60\mu g/m^3$  or above. The NO<sub>2</sub> annual mean concentrations predicted at all receptors are below this hourly exceedance indicator, suggesting that hourly exceedance of the NO<sub>2</sub> AQS objective is unlikely.

The following areas were identified to report modelled concentrations in exceedance of the annual mean NO<sub>2</sub> AQS objective:



- Within the existing AQMA, the continuous stretch of road spanning A4019 Tewkesbury Road, A4019 Poole Way and A4019 Swindon Road north of the Town Centre; and
- Along stretches of other arterial roads connecting to the Town Centre (A4013 Princess Elizabeth Way, Benhall Roundabout, A46 London Road/Berkley Street intersection, and A46 Shurdington Road).

The following additional areas were identified to report modelled concentrations within 10% of the AQS objective:

- A4019 Fairview Road, A46 Clarence Road and Albion Street;
- A46 London Road;
- Bath Road;
- A40 Lansdowne Road/Suffolk Road intersection;
- A40 Gloucester Road/B4633 Gloucester Road intersection;
- A4013 Princess Elizabeth Way/Marsland Road/Edinburgh Place intersection.

#### **Conclusions and Recommendations**

Based on the conclusions of the assessment above, the following recommendations are made:

- Continue to monitor NO<sub>2</sub> across the Borough;
- Deploy and/or relocate existing monitoring within the Borough to the other locations predicted to be in exceedance, or near exceedance, of the NO<sub>2</sub> annual mean AQS objective limit, in order to validate modelled findings; and
- Based on source apportionment results, any future intervention measures should be targeted at reducing vehicle emissions from all vehicle types, notably Cars and LGVs, which are both observed to be the two largest contributors to total vehicle emissions in areas of exceedance.

Following the completion of this modelling exercise, it is hoped that the following topics can be discussed with air quality stakeholders to aid development of the AQAP:

- Possible action plan measures being considered by the Council; and
- Ability to test the effects of these measures using the current dispersion model set up.



# **1** Introduction

Bureau Veritas has been commissioned by Cheltenham Borough Council (the Council) to complete an updated Air Quality Action Plan (AQAP) for the Council's Air Quality Management Area (AQMA), declared in 2020. Currently there is one AQMA within Cheltenham, declared as a result of exceedances of the 40  $\mu$ g/m<sup>3</sup> annual mean objective for Nitrogen Dioxide (NO<sub>2</sub>). This AQMA encompasses a continuous stretch of road, spanning A4019 Tewkesbury Road, A4019 Poole Way and A4019 Swindon Road – north of the Town Centre.

Prior to this, a whole-borough AQMA had been in place. Cheltenham Whole Borough AQMA was declared on in November 2011 for the exceedance of the Nitrogen Dioxide (NO<sub>2</sub>) annual mean UK Air Quality Strategy (AQS) objective of 40µg/m<sup>3</sup>. This AQMA was declared in response to an assessment undertaken in 2011 which evaluated the monitored NO<sub>2</sub> annual mean exceedances across Cheltenham. As a result of the findings, an AQAP was published in 2014. Between 2014 and 2018, the Review and Assessment annual reporting process identified that NO<sub>2</sub> annual mean concentrations across the Borough appeared to have stabilised below the AQS objective limit, with exceedances localised to the north of the Town Centre during 2018, specifically along the A4019. This resulted in a detailed modelling assessment, the whole-borough AQMA was revoked on 15<sup>th</sup> September 2020 and the new AQMA declared.

In order to provide technical input into an updated AQAP that will cover the area within the revised AQMA boundary, the air quality modelling completed for the 2019 detailed assessment has been updated to account for 2019 traffic data, 2019 monitoring data and the latest Local Air Quality Management (LAQM) tools. This report details the findings of this updated analysis, and provides recommendation on matters related to NO<sub>2</sub> exceedances, in order to inform the update of the AQAP.

## 1.1 Scope of Assessment

It is the general purpose and intent of this assessment to determine, with reasonable certainty, the magnitude and geographical extent of any exceedances of the AQS objectives for NO<sub>2</sub>, enabling the Council to provide for a focused consideration on updating measures as part of the revision of the AQAP.

The following are the objectives of the assessment:

- To assess the air quality at selected locations ("receptors") representative of worst-case exposure relative to the averaging period of focus (i.e. annual objective - façades of the existing residential units), based on modelling of emissions from road traffic on the local road network;
- To establish the spatial extent of any likely exceedances of the UK annual mean NO<sub>2</sub> AQS objective limit, and to identify the spatial extent of any areas within 10%;
- To establish the required reduction in emissions to comply with the UK AQS objectives; and
- To determine the relative contributions of various source types to the overall pollutant concentrations within the new AQMA, through source apportionment, in order to inform an updated AQAP.

The approach adopted in this assessment to assess the impact of road traffic emissions on air quality utilised the atmospheric dispersion model ADMS-Roads version 5.0.0.1, focusing on emissions of oxides of nitrogen (NO<sub>x</sub>), which comprise of nitric oxide (NO) and nitrogen dioxide (NO<sub>2</sub>). Particulate Matter emissions have also been considered for completeness.



In order to provide consistency with the Council's own work on air quality, the guiding principles for air quality assessments, as set out in the latest guidance provided by Defra for air quality assessment (LAQM.TG(16))<sup>1</sup>, have been used.

<sup>&</sup>lt;sup>1</sup> LAQM Technical Guidance LAQM.TG(22) – August 2022. Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.



# 2 Air Quality – Legislative Context

# 2.1 Air Quality Strategy

The importance of existing and future pollutant concentrations can be assessed in relation to the national air quality standards and objectives established by Government. The Air Quality Strategy<sup>2</sup> (AQS) provides the over-arching strategic framework for air quality management in the UK and contains national air quality standards and objectives established by the UK Government and Devolved Administrations to protect human health. The air quality objectives incorporated in the AQS and the UK Legislation are derived from Limit Values prescribed in the EU Directives transposed into national legislation by Member States.

The CAFE (Clean Air for Europe) programme was initiated in the late 1990s to draw together previous directives into a single EU Directive on air quality. The CAFE Directive<sup>3</sup> has been adopted and replaces all previous air quality Directives, except the 4<sup>th</sup> Daughter Directive<sup>4</sup>. The Directive introduces new obligatory standards for PM<sub>2.5</sub> for Government but places no statutory duty on local government to work towards achievement of these standards.

The Air Quality Standards (England) Regulations<sup>5</sup> 2010 came into force on 11 June 2010 in order to align and bring together in one statutory instrument the Government's obligations to fulfil the requirements of the new CAFE Directive.

The objectives for ten pollutants – benzene ( $C_6H_6$ ), 1,3-butadiene ( $C_4H_6$ ), carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO<sub>2</sub>), sulphur dioxide (SO<sub>2</sub>), particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>), ozone (O<sub>3</sub>) and Polycyclic Aromatic Hydrocarbons (PAHs), have been prescribed within the AQS<sup>2</sup>.

The AQS objectives apply at locations outside buildings or other natural or man-made structures above or below ground, where members of the public are regularly present and might reasonably be expected to be exposed to pollutant concentrations over the relevant averaging period. Typically, these include residential properties and schools/care homes for long-term (i.e. annual mean) pollutant objectives and high streets for short-term (i.e. 1-hour) pollutant objectives. Table 2.1 taken from LAQM TG(16)<sup>1</sup> provides an indication of those locations that may or may not be relevant for each averaging period.

This assessment focuses on NO<sub>2</sub> due to the significance this pollutant holds within the Council's administrative area - evidenced by the declared borough-wide AQMA. Moreover, as a result of traffic pollution the UK has failed to meet the EU Limit Values for this pollutant by the 2010 target date. As a result, the Government has had to submit time extension applications for compliance with the EU Limit Values, which has since passed and its continued failure to achieve these limits is currently giving rise to infraction procedures being implemented. The UK is not alone as the challenge of NO<sub>2</sub> compliance at EU level includes many other Member States.

In July 2017, the Government published its plan for tackling roadside NO<sub>2</sub> concentrations<sup>6</sup>, to achieve compliance with EU Limit Values. This sets out Government policies for bringing NO<sub>2</sub> concentrations within statutory limits in the shortest time period possible. Furthermore, the Clean Air Strategy was published in 2019, which outlines how the UK will meet international commitments

<sup>&</sup>lt;sup>2</sup> Defra (2007), The Air Quality Strategy for England, Scotland, Wales and Northern Ireland.

<sup>&</sup>lt;sup>3</sup> Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.

<sup>&</sup>lt;sup>4</sup> Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic hydrocarbons in ambient air.

 <sup>&</sup>lt;sup>5</sup> The Air Quality Standards Regulations (England) 2010, Statutory Instrument No 1001, The Stationary Office Limited.
 <sup>6</sup> Defra, DfT (2017), UK plan for tackling roadside nitrogen dioxide concentrations



to significantly reduce emissions of five damaging air pollutants by 2020 and 2030 under the adopted revised National Emissions Ceiling Directive (NECD).

The AQS objectives for these pollutants are presented in Table 2.2.

Table 2.1 – Examples of where the Air Quality Objectives should apply

| Averaging Period             | Objectives should apply at:                                                                                                                                                            | Objectives should generally not apply at:                                                                                                                      |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Annual mean                  | All locations where members of<br>the public might be regularly<br>exposed.<br>Building facades of residential                                                                         | Building facades of offices or other<br>places of work where members of the<br>public do not have regular access.<br>Hotels, unless people live there as their |
|                              | properties, schools, hospitals, care homes etc.                                                                                                                                        | permanent residence.<br>Gardens of residential properties.                                                                                                     |
|                              |                                                                                                                                                                                        | Kerbside sites (as opposed to locations<br>at the building façade), or any other<br>location where public exposure is<br>expected to be short term             |
| 24-hour mean and 8-hour mean | All locations where the annual mean objectives would apply, together with hotels.<br>Gardens or residential properties <sup>1</sup> .                                                  | Kerbside sites (as opposed to locations<br>at the building façade), or any other<br>location where public exposure is<br>expected to be short term.            |
| 1-hour mean                  | All locations where the annual mean and 24 and 8-hour mean objectives would apply.                                                                                                     | Kerbside sites where the public would<br>not be expected to have regular<br>access.                                                                            |
|                              | Kerbside sites (e.g. pavements of busy shopping streets).                                                                                                                              |                                                                                                                                                                |
|                              | Those parts of car parks, bus<br>stations and railway stations etc.<br>which are not fully enclosed,<br>where the public might<br>reasonably be expected to spend<br>one hour or more. |                                                                                                                                                                |
|                              | Any outdoor locations at which<br>the public may be expected to<br>spend one hour or longer.                                                                                           |                                                                                                                                                                |
| 15-minute mean               | All locations where members of<br>the public might reasonably be<br>expected to spend a period of 15<br>minutes or longer.                                                             |                                                                                                                                                                |

Note <sup>1</sup> For gardens and playgrounds, such locations should represent parts of the garden where relevant public exposure is likely, for example where there is seating or play areas. It is unlikely that relevant public exposure would occur at the extremities of the garden boundary, or in front gardens, although local judgement should always be applied.

#### Table 2.2 – Relevant AQS Objectives for the Assessed Pollutants in England

| Pollutant          | AQS Objective                                                           | Concentration<br>Measured as: | Date for Achievement           |
|--------------------|-------------------------------------------------------------------------|-------------------------------|--------------------------------|
| Nitrogen dioxide   | 200 μg/m <sup>3</sup> not to be exceeded<br>more than 18 times per year | 1-hour mean                   | 31 <sup>st</sup> December 2005 |
| (NO <sub>2</sub> ) | 40 µg/m³                                                                | Annual mean                   | 31 <sup>st</sup> December 2005 |
| Particles (PM10)   | 50µg/m <sup>3</sup> not to be exceeded<br>more than 35 times a year     | 24-hour mean                  | 31 <sup>st</sup> December 2004 |
|                    | 40µg/m³                                                                 | Annual Mean                   | 31 <sup>st</sup> December 2004 |



| Particles (PMac)               | 25ua/m <sup>3</sup> | Annual Mean | 2020 |
|--------------------------------|---------------------|-------------|------|
| Particles (PM <sub>2.5</sub> ) | zoµg/ms             | Annual Mean | 2020 |

# 2.2 Local Air Quality Management (LAQM)

Part IV of the Environment Act 1995<sup>7</sup> places a statutory duty on local authorities to periodically review and assess air quality within their area, and determine whether they are likely to meet the AQS objectives set down by Government for a number of pollutants – a process known as Local Air Quality Management (LAQM). The AQS objectives that apply to LAQM are defined for seven pollutants: benzene, 1,3-butadiene, CO, Pb, NO<sub>2</sub>, SO<sub>2</sub> and Particulate Matter.

Local Authorities were formerly required to report on all of these pollutants, but following an update to the regime in 2016, the core of LAQM reporting is now focussed on the objectives of three pollutants;  $NO_2$ ,  $PM_{10}$  and  $SO_2$ . Where the results of the Review and Assessment process highlight that problems in the attainment of the health-based objectives pertaining to the above pollutants will arise, the authority is required to declare an AQMA – a geographic area defined by high concentrations of pollution and exceedances of health-based standards.

The areas in which the AQS objectives apply are defined in the AQS as locations outside (i.e. at the façade) of buildings or other natural or man-made structures above or below ground where members of the public are regularly present and might reasonably be expected to be exposed to pollutant concentrations over the relevant averaging period of the AQS objective.

Following any given declaration, the Local Authority is subsequently required to develop an Air Quality Action Plan (AQAP), which will contain measures to address the identified air quality issue and bring the location into compliance with the relevant objective as soon as possible.

One of the objectives of the LAQM regime is for local authorities to enhance integration of air quality into the planning process. Current LAQM Policy Guidance<sup>8</sup> recognises land-use planning as having a significant role in term of reducing population exposure to elevated pollutant concentrations. Generally, the decisions made on land-use allocation can play a major role in improving the health of the population, particularly at sensitive locations – such as schools, hospitals and dense residential areas.

<sup>&</sup>lt;sup>7</sup> http://www.legislation.gov.uk/ukpga/1995/25/part/IV

<sup>&</sup>lt;sup>8</sup> Local Air Quality Management Policy Guidance LAQM.PG(16). April 2016. Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.



# 3 Review and Assessment of Air Quality Undertaken by the Council

# 3.1 Local Air Quality Management

The Council currently has one AQMA (Cheltenham Borough Council AQMA 2020), declared in September 2020 for the exceedance of the  $NO_2$  annual mean UK AQS objective of  $40\mu g/m^3$ . The AQMA, as shown in Figure 3-1, encompasses a continuous stretch of road (A4019) just north of the Town Centre and was declared in response to a detailed assessment undertaken by Bureau Veritas in 2019 which recommended the previous borough-wide AQMA be amended to cover this more localised area of exceedances.

The Council's 2019 Local Air Quality Management (LAQM) Annual Status Report (ASR) identified the need to review the previous borough-wide AQMA boundary as a result of monitored annual mean NO<sub>2</sub> concentrations over the past several years that demonstrated a localisation of exceedances to the north of the town centre. Bureau Veritas was commissioned to undertake a detailed dispersion modelling assessment in 2019 as the next step in the review process, to understand the full extent of exceedances and support potential amendments to the AQMA boundary. The most recent LAQM report completed by the Council was the 2021 ASR<sup>9</sup>.

In order to provide technical input into the updated AQAP, the air quality modelling undertaken in 2019 has been updated to account for updated traffic data, monitoring data and the latest Local Air Quality Management (LAQM) tools. This report details the findings of this updated analysis, and provides recommendation on matters related to NO<sub>2</sub> exceedances, in order to inform a new targeted set of measures within the updated AQAP. This modelling assessment has used a baseline year of 2019 so as not to account for the unusual traffic patterns occurring in 2020 as a result of the COVID-19 pandemic.

## 3.2 Review of Air Quality Monitoring

#### 3.2.1 Local Automatic Air Quality Monitoring

During 2019, the Council undertook automatic (continuous) monitoring at one site within Cheltenham (CM1). CM1 is located north of the Town Centre along the A4019 – Swindon Road, adjacent to the St George's Street intersection within the AQMA. CM1 solely monitors  $NO_2$  via a chemiluminescent analyser.

Details of CM1 are provided in Table 3.1 and 2019 monitoring results are presented in Table 3.1, whilst the location of the monitoring site is illustrated in Figure 3-2.

| Site ID | Site<br>Location        | Site Type | OS Grid Ref<br>(E, N) | In<br>AQMA | Pollutants<br>Monitored | Inlet Height<br>(m) |
|---------|-------------------------|-----------|-----------------------|------------|-------------------------|---------------------|
| CM1     | St<br>Georges<br>Street | Kerbside  | 394760, 222878        | Yes        | NO <sub>2</sub>         | 1.3                 |

#### Table 3.1 – Automatic Monitor CM1

<sup>&</sup>lt;sup>9</sup> Cheltenham Borough Council (2020), 2020 <u>Annual Status Report</u>



| Valid Data<br>Site ID Capture for |          | NO <sub>2</sub> Annual Mean Concentration (μg/m³) |      |      |      |      |
|-----------------------------------|----------|---------------------------------------------------|------|------|------|------|
|                                   | 2019 (%) | 2015                                              | 2016 | 2017 | 2018 | 2019 |
| CM1                               | 97.3%    | 35.0                                              | 34.0 | 36.0 | 32.7 | 36.0 |

#### Table 3.2 – Automatic Monitor CM1: NO2 Annual Mean Concentrations

#### Table 3.3 – Automatic Monitor CM1: Number of NO<sub>2</sub> Hourly Means Exceedances

| Valid Data<br>Site ID Capture for |          | Hourly Means in Excess of the 1-hour Objective (200 $\mu$ g/m <sup>3</sup> ) |      |      |      |      |
|-----------------------------------|----------|------------------------------------------------------------------------------|------|------|------|------|
|                                   | 2018 (%) | 2015                                                                         | 2016 | 2017 | 2018 | 2019 |
| CM1                               | 97.3     | 0                                                                            | 0    | 0    | 0    | 0    |

Whilst there were no recorded exceedances of either the annual mean or short term AQS objectives for  $NO_2$  at CM1 between 2015 and 2019, annual mean  $NO_2$  concentrations have been within 10% of the AQS objective limit in both 2017 and 2019. Hourly mean  $NO_2$  concentrations recorded at CM1 have not reported an exceedance of  $200\mu g/m^3$  within the past five years.

#### 3.2.2 Local Non-Automatic Air Quality Monitoring

During 2019, the Council's non-automatic monitoring programme consisted of recording  $NO_2$  concentrations using a network of 29 passive diffusion tubes – comprising 27 sites (with the provision of a triplicate co-location site). 25 of these locations are roadside sites and the remaining 2 are kerbside sites. Monitoring at Clarence Parade has been removed since 2018 and a new diffusion tube site installed (site 30) across the road on the same street, due to the diffusion tube often going missing at the original location.

The details of the diffusion tube monitoring within Cheltenham for 2019 are shown in Table 3.4, whereas results are presented in Table 3.4.

| Site ID | Site Location                  | Site<br>Type | In AQMA | OS Grid Ref<br>(X, Y) |
|---------|--------------------------------|--------------|---------|-----------------------|
| 1       | Municipal Offices (Front)      | R            | Y       | 394757, 222320        |
| 2       | Municipal Offices (Back)       | R            | Y       | 394724, 222320        |
| 3       | Ladies College                 | R            | Y       | 394621, 222215        |
| 4       | 2 Gloucester Road              | R            | Y       | 394237, 223006        |
| 5       | 422 High St                    | R            | Y       | 394350, 222923        |
| 6       | New Rutland                    | R            | Y       | 394738, 222888        |
| 7,8,9   | CM1 Co-location Study          | R            | Y       | 394760, 222878        |
| 10      | 2 Swindon Road                 | К            | Y       | 394830, 222845        |
| 11      | Portland Street                | R            | Y       | 395110, 222670        |
| 12      | Winchcombe/Fairview            | R            | Y       | 395210, 222618        |
| 13      | Albion Street (outside no. 54) | К            | Y       | 395207, 222465        |
| 14      | 2 London Road                  | R            | Y       | 395362, 222000        |
| 15      | YMCA - High St                 | R            | Y       | 395182, 222183        |
| 16      | 8a Bath Road                   | R            | Y       | 395146, 222149        |
| 18      | 81 London Road                 | R            | Y       | 395660, 221670        |

#### Table 3.4 – Cheltenham Borough Council LAQM Diffusion Tube Monitoring



| Site ID | Site Location                           | Site<br>Type | In AQMA | OS Grid Ref<br>(X, Y) |
|---------|-----------------------------------------|--------------|---------|-----------------------|
| 19      | 264 Gloucester Road                     | R            | Y       | 393296, 222170        |
| 20      | 340 Gloucester Road                     | R            | Y       | 392912, 221862        |
| 21      | 14 Imperial Square                      | R            | Y       | 394809, 222060        |
| 22      | Hatherley Lane                          | R            | Y       | 391179, 221640        |
| 23      | St James Square                         | R            | Y       | 394577, 222424        |
| 24      | St Gregory's Church                     | R            | Y       | 394566, 222600        |
| 25      | St Georges Street                       | R            | Y       | 394708, 222763        |
| 26      | St Pauls Road                           | R            | Y       | 394902, 223004        |
| 27      | St Luke's College Road                  | R            | Y       | 395156, 221866        |
| 28      | Princess Elizabeth Way North            | R            | Y       | 393081, 223643        |
| 29      | Princess Elizabeth Way South            | R            | Y       | 392066, 222540        |
| 30      | Clarence Parade Alternative<br>Location | R            | Y       | 394810, 222439        |

#### Table 3.5 – Cheltenham Borough Council LAQM Diffusion Tube Monitoring

| Site ID | Valid Data<br>Capture for | Annual Mean NO₂ Concentration (µg/m³) |      |      |      |      |  |  |
|---------|---------------------------|---------------------------------------|------|------|------|------|--|--|
|         | 2019 (%)                  | 2015                                  | 2016 | 2017 | 2018 | 2019 |  |  |
| 1       | 100.0                     | -                                     | -    | 26.4 | 22.9 | 23.8 |  |  |
| 2       | 100.0                     | -                                     | -    | 32.9 | 28.0 | 27.6 |  |  |
| 3       | 100.0                     | 36.6                                  | 33.8 | 32.8 | 27.5 | 29.6 |  |  |
| 4       | 100.0                     | 46.5                                  | 43.2 | 45.4 | 41.2 | 43.1 |  |  |
| 5       | 100.0                     | 47.3                                  | 45.5 | 49.9 | 45.2 | 46.5 |  |  |
| 6       | 100.0                     | 42.4                                  | 40.8 | 41.6 | 37.9 | 40.3 |  |  |
| 7,8,9   | 91.7                      | 34.6                                  | 33.3 | 36.4 | 32.9 | 35.1 |  |  |
| 10      | 100.0                     | 37.9                                  | 38.2 | 39.4 | 35.6 | 39.2 |  |  |
| 11      | 100.0                     | 36.8                                  | 35.7 | 35.9 | 32.6 | 34.1 |  |  |
| 12      | 91.7                      | 33.0                                  | 32.2 | 32.8 | 31.8 | 34.4 |  |  |
| 13      | 100.0                     | -                                     | -    | 34.8 | 31.3 | 30.4 |  |  |
| 14      | 100.0                     | 40.0                                  | 38.0 | 37.1 | 37.4 | 37.4 |  |  |
| 15      | 100.0                     | 34.5                                  | 32.9 | 31.9 | 29.1 | 28.5 |  |  |
| 16      | 100.0                     | 41.1                                  | 38.4 | 38.0 | 34.5 | 34.4 |  |  |
| 18      | 91.7                      | 41.4                                  | 39.6 | 38.4 | 37.3 | 37.6 |  |  |
| 19      | 83.3                      | 36.7                                  | 32.2 | 34.4 | 30.6 | 33.4 |  |  |
| 20      | 100.0                     | 38.7                                  | 35.9 | 38.6 | 35.3 | 36.2 |  |  |
| 21      | 100.0                     | -                                     | -    | -    | 23.4 | 23.9 |  |  |
| 22      | 75.0                      | -                                     | -    | -    | 34.9 | 33.4 |  |  |
| 23      | 100.0                     | -                                     | -    | -    | 30.9 | 32.6 |  |  |
| 24      | 91.7                      | -                                     | -    | -    | 27.9 | 25.1 |  |  |
| 25      | 100.0                     | -                                     | -    | -    | 31.9 | 31.6 |  |  |
| 26      | 100.0                     | -                                     | -    | -    | 29.0 | 31.3 |  |  |
| 27      | 91.7                      | -                                     | -    | -    | 24.8 | 27.6 |  |  |
| 28      | 100.0                     | -                                     | -    | -    | 38.4 | 38.2 |  |  |



| Site ID | Valid Data<br>Capture for<br>2019 (%) | Annual Mean NO₂ Concentration (µg/m³) |      |      |      |      |  |  |
|---------|---------------------------------------|---------------------------------------|------|------|------|------|--|--|
| One ib  |                                       | 2015                                  | 2016 | 2017 | 2018 | 2019 |  |  |
| 29      | 100.0                                 | -                                     | -    | -    | 31.2 | 33.7 |  |  |
| 30*     | 58.3                                  | -                                     | -    | -    | -    | 31.6 |  |  |
| Notes   |                                       |                                       | ·    | ·    |      |      |  |  |

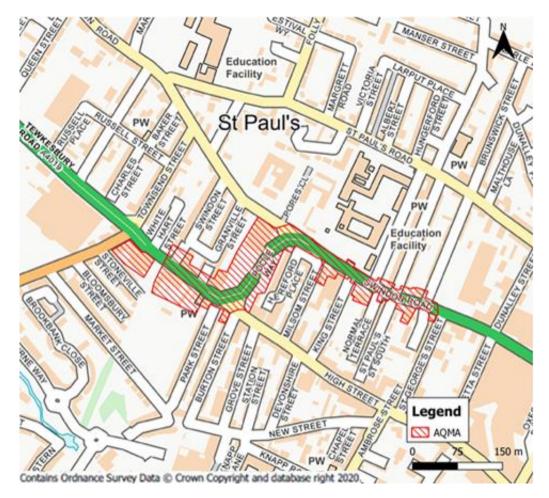
\* Annualisation performed due to data capture <75%

All values reported are bias adjusted as required and represent the monitoring location (i.e. absence of distance correction calculations)

Three monitoring locations (Sites 4, 5 and 6) reported annual mean NO<sub>2</sub> concentrations exceeding  $40\mu g/m^3$  in 2019. Sites 4 and 5 have consecutively reported annual mean NO<sub>2</sub> concentrations to be above  $40\mu g/m^3$  for the previous four years (2015 – 2018), whilst Site 6 reported exceedances in all but 2018, in which concentrations were within 10% of the AQS Objective. All three sites are located immediately north of Cheltenham Town Centre, along stretches of the A4019 – (Tewkesbury Road, High Street and Swindon Road) which connects to form a key arterial route to the M5 within the AQMA.

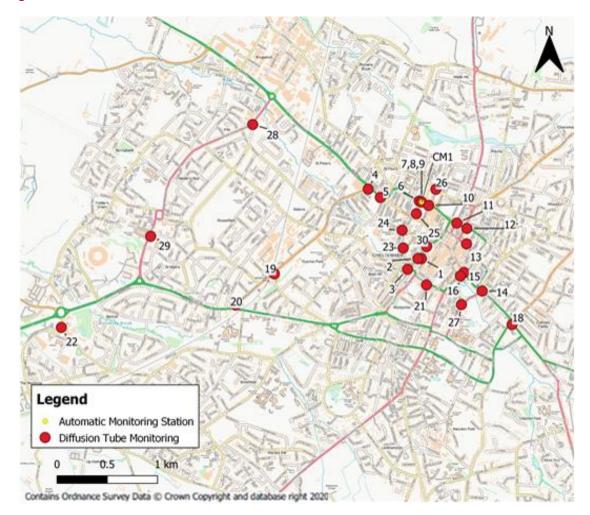
Site 5, within the AQMA, reported the highest annual mean NO<sub>2</sub> concentration within Cheltenham for 2019 (46.5µg/m<sup>3</sup>) – a trend consistent since 2015, with concentrations peaking at 49.9µg/m<sup>3</sup> in 2017. Site 5 is situated along a façade of a residential property which immediately fronts onto a stretch of the A4019 (High Street), susceptible to congestion due to the convergence of high capacity and town centre roads (M5, A4019 – Tewkesbury Road, A4019 – High Street, A4019 – Swindon Road and High Street).

The empirical relationship given in LAQM.TG(16)<sup>1</sup> states that exceedances of the 1-hour mean objective for NO<sub>2</sub> is only likely to occur where annual mean concentrations are  $60\mu g/m^3$  or above at a location of relevant exposure (Table 2.1). This indicates that an exceedance of the 1-hour mean objective is unlikely to have occurred at these sites between 2015 and 2019.


Five monitoring locations (Site 10, 14, 18, 20 and 28) report annual mean  $NO_2$  concentrations to be within 10% of the AQS objective limit for 2019. All five diffusion tubes are located adjacent to stretches of Cheltenham's main arterial road network.

The results from the Council's 2019 monitoring programme demonstrate NO<sub>2</sub> annual mean concentrations across the borough to have stabilised below the AQS objective limit, with exceedances localised to areas of the main arterial road network, specifically the A4019 north of the town centre, London Road (A49), Princess Elizabeth Way (A4013) and the junction of Gloucester Road (B4633) with Lansdown Road (A40). This reaffirmed the need for revocation of the previous borough-wide AQMA and declaration of the current, more focused AQMA boundary in September 2020.

Cheltenham Borough Council AQMA boundary and all 2019 council-operated monitoring locations are presented in Figure 3-1 and Figure 3-2, respectively.




#### Figure 3-1 - Cheltenham Borough Council AQMA Boundary





#### Figure 3-2 – Local Monitoring Locations





# 3.3 Defra Background Concentration Estimates

Defra maintains a nationwide model of existing and future background air pollutant concentrations at a 1km x 1km grid square resolution. This data includes annual average concentration for NO<sub>x</sub>, NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub>, using a base year of 2018 (the year in which comparisons between modelled and monitoring are made)<sup>10</sup>. The model used to determine the background pollutant levels is semiempirical in nature: it uses the National Atmospheric Emissions Inventory (NAEI) emissions to model the concentrations of pollutants at the centroid of each 1km grid square, but then calibrates these concentrations in relation to actual monitoring data.

Due to the absence of local background monitoring within Cheltenham, pollutant background concentrations used for the purposes of this assessment have been obtained from the Defra supplied background maps for the relevant 1km x 1km grid squares covering the modelled domain for the year 2019. The relevant annual mean background concentration will be added to the predicted annual mean road contributions in order to predict the total pollutant concentration at each receptor location. The total pollutant concentration can then be compared against the relevant AQS objective to determine the event of an exceedance.

The Defra mapped background concentrations for base year of 2019, which cover the modelled domain, are presented in Table B.1 of the Appendices. All of the mapped background concentrations presented are well below the respective annual mean AQS objectives.

<sup>&</sup>lt;sup>10</sup> Defra Background Maps (2019), available at <u>https://uk-air.defra.gov.uk/data/laqm-background-home</u>



# 4 Assessment Methodology

To predict pollutant concentrations of road traffic emissions the atmospheric model ADMS Roads version 5.0.0.1 was used to model a 2019 baseline scenario. The guiding principles for air quality assessments as set out in the latest guidance and tools provided by Defra for air quality assessment (LAQM.TG(16)<sup>1</sup> have been used.

The approach used in this assessment has been based on the following:

- Prediction of NO<sub>2</sub> concentrations to which existing receptors may be exposed and comparison with the relevant AQS objectives;
- Quantification of relative NO<sub>2</sub> contribution of sources to overall NO<sub>2</sub> pollutant concentration; and
- Determination of the geographical extent of any potential exceedances in regard to the existing AQMA boundary.

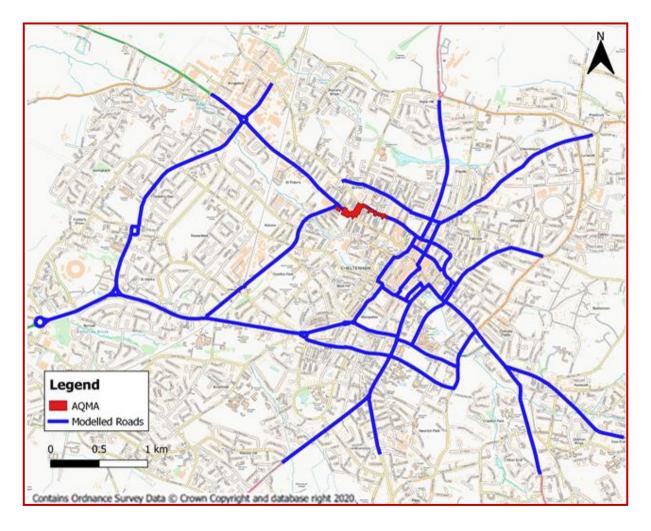
## 4.1 Traffic Inputs

Traffic flows and vehicle class compositions for the 2019 baseline scenario were taken from the Gloucestershire County Council (GCC) roads traffic database and the Department for Transport (DfT) traffic count point database. The GCC monitoring programme comprises both permanent Automatic Traffic Count (ATC) and temporary survey points. Whilst data from the permanent count points was provided as annual average daily traffic, data for the temporary survey points was provided as average daily traffic. The Transport Officer at GCC advised it would be suitable to consider the average daily traffic data representative of typical flows.

On modelled road links where neither DfT nor GCC 2019 data was available, the 2017 traffic flows provided by GCC for the Detailed Assessment undertaken by Bureau Veritas in 2019 were used. A factor derived from the Government software TEMPro<sup>11</sup> was applied to predict 2019 concentrations from 2017 and it was assumed that the percentage of heavy goods vehicles in 2019 remained the same as those recorded in 2017.

Traffic speeds were modelled at either the relevant speed limit for each road or, where available, monitored vehicle speeds provided by GCC. Where appropriate, vehicle speeds have been reduced in accordance with LAQM  $TG(16)^1$  to simulate queues at junctions, traffic lights and other locations where queues or slower traffic are known to be an issue. Consultation with the Council has been undertaken throughout this process to identify areas where congestion is considered to be prevalent.

The Emissions Factors Toolkit (EFT) version 10.1 developed by Defra<sup>12</sup> has been used to determine vehicle emission factors for input into the ADMS-Roads model, based upon the traffic data inputs.


Details of the traffic flows used in this assessment are provided in Table C. 1 of the Appendices. The entire modelled road network across Cheltenham is presented in Figure 4-1.

<sup>&</sup>lt;sup>11</sup> Department for Transport, TEMPro, available at: <u>https://www.gov.uk/government/publications/tempro-downloads</u>

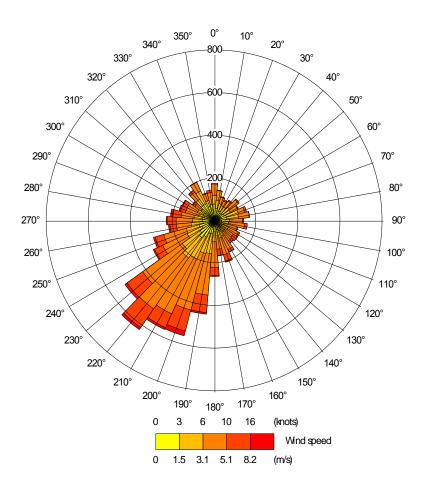
<sup>&</sup>lt;sup>12</sup> Defra, Emissions Factors Toolkit. <u>https://laqm.defra.gov.uk/review-and-assessment/tools/emissions-factors-toolkit.html</u>



# Figure 4-1 – City Wide Modelled Road Network






# 4.2 General Model Inputs

A site surface roughness value of 1 m was entered into the ADMS-roads model, consistent with the built-up nature of the modelled domain. In accordance with CERC's ADMS Roads User Guide<sup>13</sup>, a minimum Monin-Obukhov length of 30 m was used for the ADMS Road model to reflect the urban topography of the model domain.

One year of hourly sequential meteorological data from a representative synoptic station is required by the dispersion model. 2019 meteorological data from Gloucestershire weather station has been used in this assessment. The station is located approximately 6.5 km west of Cheltenham town centre and is considered representative of the meteorological conditions experienced throughout the borough. A surface roughness value of 0.5 m was used for the area surrounding the meteorological station, more representative of the Gloucestershire airfield location.

A wind rose for this site for the year 2019 is shown in Figure 4-2.

#### Figure 4-2 – Wind rose for Gloucestershire Data 2019



Most dispersion models do not use meteorological data if they relate to calm winds conditions, as dispersion of air pollutants is more difficult to calculate in these circumstances. ADMS-Roads treats calm wind conditions by setting the minimum wind speed to 0.75m/s. It is recommended in LAQM.TG(16)<sup>1</sup> that the meteorological data file be tested within a dispersion model and the relevant output log file checked, to confirm the number of missing hours and calm hours that cannot be used

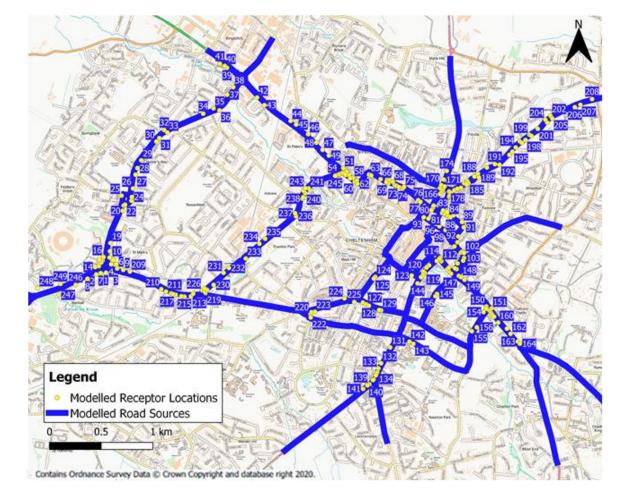
<sup>&</sup>lt;sup>13</sup> CERC (2020), ADMS-Roads User Guide Version 5



by the dispersion model. This is important when considering predictions of high percentiles and the number of exceedances. LAQM.TG(16)<sup>1</sup> recommends that meteorological data should have a percentage of usable hours greater than 85%. If the data capture is less than 85% short-term concentration predictions should be expressed as percentiles rather than as numbers of exceedances. The 2019 meteorological data from Gloucestershire includes 8,666 lines of usable hourly data out of the total 8,760 for the year, i.e. 98.9% usable data. This is therefore suitable for the dispersion modelling exercise.

# 4.3 Sensitive Receptors

A total of 249 discrete receptors were included within the assessment to represent locations of relevant exposure. Details of the receptors are presented within Table D.1 of the Appendices and their locations are illustrated in Figure 4-3.


The majority of the receptors (169) were included at a height of 1.5 m to represent ground level exposure, whereas the remainder were included at various heights to represent relevant exposure relative to the adjacent modelled road link, e.g. where there is no residential use at ground level (Table 4.1).

Concentrations were also modelled across a regular gridded area, at a standardised height of 1.5m, covering the full extent of the model domain. The intelligent gridding option was applied to the ADMS-roads model meaning additional points were added at locations close to the roads for greater output resolution.

| Height (m) | Number of Receptors |  |  |  |  |
|------------|---------------------|--|--|--|--|
| 0.0        | 53                  |  |  |  |  |
| 1.0        | 1                   |  |  |  |  |
| 1.5        | 169                 |  |  |  |  |
| 3.5        | 20                  |  |  |  |  |
| 4.0        | 6                   |  |  |  |  |

#### Table 4.1 – Number of Receptors Included at Various Heights





# Figure 4-3 – Receptor Locations Considered in the Assessment

Bureau Veritas AIR10276099



# 4.4 Model Outputs

The background pollutant values discussed in Section 3.3 have been used in conjunction with the concentrations predicted by the ADMS-Roads model to calculate predicted total annual mean concentrations of  $NO_x$ .

For the prediction of annual mean NO<sub>2</sub> concentrations for the modelled scenarios, the output of the ADMS-Roads model for road NO<sub>x</sub> contributions has been converted to total NO<sub>2</sub> following the methodology in LAQM.TG(16)<sup>1</sup>, using the NO<sub>x</sub> to NO<sub>2</sub> conversion tool developed on behalf of Defra. This tool also uses the total background NO<sub>x</sub> and NO<sub>2</sub> concentrations. This assessment has used version 8.1 (August 2020) of the NO<sub>x</sub> to NO<sub>2</sub> conversion tool<sup>14</sup>. The road contribution is then added to the appropriate NO<sub>2</sub> background concentration value to obtain an overall total NO<sub>2</sub> concentration.

For the prediction of short term NO<sub>2</sub> impacts, LAQM.TG(16)<sup>1</sup> advises that it is valid to assume that exceedances of the 1-hour mean AQS objective for NO<sub>2</sub> are only likely to occur where the annual mean NO<sub>2</sub> concentration is  $60\mu$ g/m<sup>3</sup> or greater. This approach has thus been adopted for the purposes of this assessment.

In addition to annual mean concentrations,  $NO_x$  source apportionment was carried out for the following vehicle classes:

- Cars;
- Light-Goods Vehicles (LGVs);
- Heavy-Goods Vehicles (HGVs);
- Bus and Coaches; and
- Motorcycles.

Verification of the ADMS-Roads assessment has been undertaken using a number of local authority diffusion tube monitoring locations. All  $NO_2$  results presented in the assessment are those calculated following the process of model verification. Full details of the verification process are provided in Appendix A – ADMS Model Verification.

## 4.5 Uncertainty

Due to the number of inputs that are associated with the modelling of the study area there is a level of uncertainty that has to be taken into account when drawing conclusions from the predicted concentrations of NO<sub>2</sub>. The predicted concentrations are based upon the inputs of traffic data, background concentrations, emission factors, street canyon calculations, meteorological data, modelling terrain limitations and the availability of monitoring data from the assessment area(s).

# 4.6 Uncertainty in NO<sub>x</sub> and NO<sub>2</sub> Trends

Recent studies have identified historical monitoring data within the UK that shows a disparity between measured concentration data and the projected decline in concentrations associated with emission forecasts for future years<sup>15</sup>. Ambient concentrations of NO<sub>x</sub> and NO<sub>2</sub> have shown two distinct trends over the past twenty-five years: (1) a decrease in concentrations from around 1996

 <sup>&</sup>lt;sup>14</sup> Defra NO<sub>x</sub> to NO<sub>2</sub> Calculator (2020), available at <u>https://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html#NOxNO2calc</u>
 <sup>15</sup> Carslaw, D, Beevers, S, Westmoreland, E, Williams, M, Tate, J, Murrells, T, Steadman, J, Li, Y, Grice, S, Kent, Aand

<sup>&</sup>lt;sup>15</sup> Carslaw, D, Beevers, S, Westmoreland, E, Williams, M, Tate, J, Murrells, T, Steadman, J, Li, Y, Grice, S, Kent, Aand Tsagatakis, I. 2011, Trends in NO<sub>x</sub> and NO<sub>2</sub> emissions and ambient measurements in the UK, prepared for Defra, July 2011.



to 2002/04, followed by (2) a period of more stable concentrations from 2002/04 rather than the further decline in concentrations that was expected due to the improvements in vehicle emissions standards.

The reason for this disparity is related to the actual on-road performance of vehicles, in particular diesel cars and vans, when compared with calculations based on the Euro emission standards. Preliminary studies suggest the following:

- NO<sub>x</sub> emissions from petrol vehicles appear to be in line with current projections and have decreased by 96% since the introduction of 3-way catalysts in 1993;
- NO<sub>x</sub> emissions from diesel cars, under urban driving conditions, do not appear to have declined substantially, up to and including Euro 5. There is limited evidence that the same pattern may occur for motorway driving conditions; and
- NO<sub>x</sub> emissions from HDVs equipped with Selective Catalytic Reduction (SCR) are much higher than expected when driving at low speeds.

This disparity in the historical national data highlights the uncertainty of future year projections of both  $NO_x$  and  $NO_2$ .

Defra and the Devolved Administrations have investigated these issues and have since published updated versions of the EFT that utilise COPERT 5 emission factors, which may go some way to addressing this disparity, but it is considered likely that a gap still remains. This assessment has utilised the latest EFT version 10.1 and associated tools published by Defra to help minimise any associated uncertainty when forming conclusions from the results.



# **5** Results

## 5.1 Modelled Concentrations

#### 5.1.1 Baseline 2019 NO<sub>2</sub> Concentrations

The assessment has considered emissions of NO<sub>2</sub> from road traffic at 249 existing receptor locations representing locations of relevant exposure, and across a generic output grid covering the modelled area.

Table 5.1 provides a summary of the modelled receptors split into groups based on the predicted annual mean  $NO_2$  concentration. It can be seen that of the 249 discrete receptors, 14 (5.6%) are predicted to be above the  $NO_2$  annual mean AQS objective limit, with a further 26 (10.4%) within 10%.

| Modelled NO <sub>2</sub><br>Concentration<br>(µg/m <sup>3</sup> ) | Number of<br>Receptors | Reference to the AQS<br>Objective       | Number of<br>Receptors | % of<br>Receptors |  |
|-------------------------------------------------------------------|------------------------|-----------------------------------------|------------------------|-------------------|--|
| >44                                                               | 8                      | Above 40µg/m <sup>3</sup> AQS Objective | 14                     | 5.6%              |  |
| 40 - 44                                                           | 6                      | Above 40µg/m Ado Objective              | 14                     | 5.0 %             |  |
| 36 - 40                                                           | 26                     | Within 10% of AQS Objective             | 26                     | 10.4%             |  |
| 32 - 36                                                           | 58                     | Below 36µg/m <sup>3</sup> AQS Objective | 209                    | 83.9%             |  |
| <32                                                               | 151                    | Below 36µg/m <sup>9</sup> AQS Objective | 209                    | 03.9%             |  |

#### Table 5.1 – Summary of 2019 Modelled Receptor Results NO<sub>2</sub>

The highest annual mean NO<sub>2</sub> concentration was recorded at Receptor 60 with a concentration of 56.7 $\mu$ g/m<sup>3</sup>. Receptor 60 is located along a façade of a residential property within the AQMA which immediately fronts onto a stretch of the A4019 – High Street, susceptible to congestion due to the convergence of high capacity and town centre roads (M5, A4019 – Tewkesbury Road, A4019 – High Street, A4019 – Swindon Road and High Street). The junction's role as a major strategic connection within the region is believed to be the cause of the elevated NO<sub>2</sub> annual mean concentrations predicted at Receptor 60.

The empirical relationship given in LAQM.TG(16)<sup>1</sup> states that exceedance of the 1-hour mean objective for NO<sub>2</sub> is only likely to occur where annual mean concentrations are 60  $\mu$ g/m<sup>3</sup> or above. Given the NO<sub>2</sub> annual mean concentration recorded at Receptor 60 is below the hourly exceedance indicator (60 $\mu$ g/m<sup>3</sup>), an exceedance of the hourly NO<sub>2</sub> AQS objective is unlikely at this location. In addition, on review of the annual mean NO<sub>2</sub> concentration swith a modelled annual mean NO<sub>2</sub> concentration above 60 $\mu$ g/m<sup>3</sup>, which suggests that an exceedance of the hourly NO<sub>2</sub> AQS objective is unlikely across the modelled area.

Figure 5-1 shows the locations of those receptors which are exceeding the  $40\mu g/m^3$  annual mean AQS objective and those receptors which are within 10% of the annual mean AQS objective (36 to  $40\mu g/m^3$ ). Based on these results, the following observations were made:

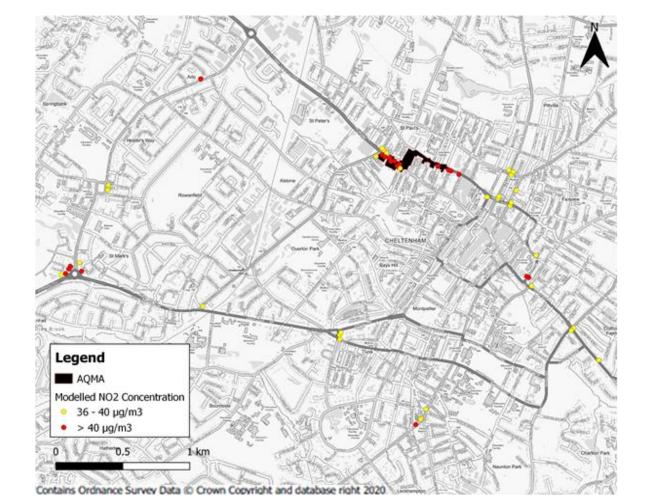
Areas of exceedance or near exceedance of the annual mean NO<sub>2</sub> AQS objective were concentrated to roadside locations near junctions where key arterial roads meet, confirming vehicular traffic to be the main contributor to elevated levels of NO<sub>2</sub> concentrations within Cheltenham. Notable roads include: A4013 Princess Elizabeth Way, A4019 Tewkesbury Road, A4019 Swindon Road, A46 Berkeley Street, A46 Bath Road, and A46 London Road.

The following areas were identified to report modelled concentrations in exceedance of the annual mean  $NO_2$  AQS objective:



- Within the existing AQMA, the continuous stretch of road spanning A4019 Tewkesbury Road, A4019 Poole Way and A4019 Swindon Road north of the Town Centre; and
- Along stretches of other arterial roads connecting to the Town Centre (A4013 Princess Elizabeth Way, Benhall Roundabout, A46 London Road/Berkley Street intersection, and A46 Shurdington Road).

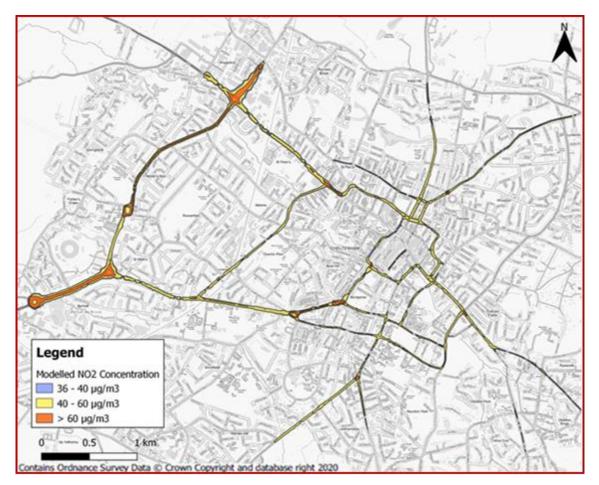
The following additional areas were identified to report modelled concentrations within 10% of the AQS objective:


- A4019 Fairview Road, A46 Clarence Road and Albion Street;
- A46 London Road;
- Bath Road;
- A40 Lansdowne Road/Suffolk Road intersection;
- A40 Gloucester Road/B4633 Gloucester Road intersection;
- A4013 Princess Elizabeth Way/Marsland Road/Edinburgh Place intersection.

An expansion of the Council's monitoring network is recommended so as to include those locations outside of the AQMA that have been identified to have a modelled exceedance and/or near exceedance, in order to validate the modelled findings.

Monitoring sites within and/or adjacent to the locations identified to have a modelled exceedance and/or near exceedance outside of the declared AQMA area should be reviewed in order to validate predicted model findings.

A full set of concentration results for the discrete receptors used within the assessment is provided in Table D.1 of the Appendices. To provide further detail on the AQMA area, annual mean NO<sub>2</sub> concentrations were also predicted at generic gridded receptor locations (Figure 5-3).






#### Figure 5-1 – Location of Discrete Receptors Predicted to be within 10% or Above the NO<sub>2</sub> Annual Mean AQS Objective









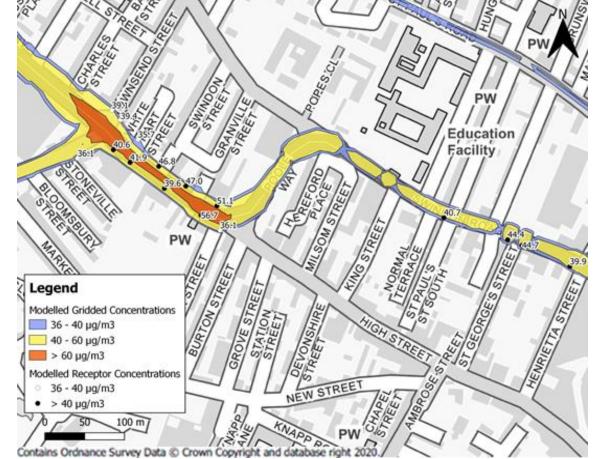



Figure 5-3 – Annual Mean NO<sub>2</sub> Concentration Isopleths and Model Predictions at Discrete Receptor Locations within Declared AQMA

2020.



# 5.2 Estimated Year of Compliance

Following the identification of exceedances of the AQS objectives, it is useful to provide an estimate of the year by which concentrations at the identified locations of exceedances will become compliant with the relevant AQS objective. This is initially provided below assuming only the trends for future air quality, as currently predicted by Defra, are realised. The implementation of specific intervention measures to mitigate the local air quality issues, as are currently being developed by the Council within a revised AQAP, would then be considered most likely to bring forwards the estimated date of compliance.

Following the methodology outlined in LAQM.TG(16)<sup>1</sup> paragraph 7.70 onward, the year by which concentrations at the identified locations of exceedances will become compliant with the NO<sub>2</sub> annual mean AQS objective has been estimated. This has been completed using the predicted modelled NO<sub>2</sub> concentrations from the 2019 Base scenario.

As a worst-case approach, the projection is based upon the receptor predicted as having the maximum annual mean NO<sub>2</sub> concentration, which in this case is Receptor 60. The appropriate roadside NO<sub>2</sub> projection factors, as provided on the LAQM Support website<sup>16</sup>, are then applied to this concentration value to ascertain the estimated NO<sub>2</sub> annual mean reduction per annum, and hence the anticipated year of compliance. In this case, roadside projection factors for 'Rest of UK (HDV <10%)' have been applied, consistent with the worst-case receptor location.

The projected  $NO_2$  annual mean concentrations following the above approach are presented in Table 5.2.

| Receptor 60                                                                                                                                              |      |                                                          |      |      |      |      |      |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------|------|------|------|------|------|------|------|
| 2019 Annual Mean                                                                                                                                         |      | Predicted Annual Mean Concentration (µg/m <sup>3</sup> ) |      |      |      |      |      |      |      |
| Concentration (µg/m³)                                                                                                                                    | 2020 | 2021                                                     | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 |
| 56.7                                                                                                                                                     | 53.9 | 50.9                                                     | 48.0 | 45.5 | 43.1 | 40.8 | 38.8 | 37.0 | 35.4 |
| In <b>bold</b> , exceedance of the NO <sub>2</sub> annual mean AQS objective of 40µg/m <sup>3</sup><br>Vehicle Adjustment Factor = Rest of UK (HDV <10%) |      |                                                          |      |      |      |      |      |      |      |

#### Table 5.2 – Projected Annual Mean NO2 Concentrations

Table 5.2 indicates that the first year by which Receptor 60 will be exposed to a concentration below the annual mean  $NO_2$  AQS objective will be 2026. Additionally, it is expected that concentrations are expected to drop below 10% of the annual mean  $NO_2$  AQS objective by 2028. 2026 is therefore considered the predicted year of compliance for those receptors used within the model, which are believed to represent worst case exposure within Cheltenham, in the absence of the implementation of any specific intervention measures to further bring forward local air quality improvements in the area.

# 5.3 Source Apportionment

To help inform the development of measures as part of the action plan stage of the project, a  $NO_x$  source apportionment exercise was undertaken for the following vehicle classes:

<sup>&</sup>lt;sup>16</sup> https://laqm.defra.gov.uk/tools-monitoring-data/roadside-no2-projection-factor.html



- Cars;
- Light-Goods Vehicles (LGVs);
- Heavy-Goods Vehicles (HGVs);
- Bus and Coaches; and
- Motorcycles.

This will provide vehicle emission proportions of  $NO_x$  that will allow the Council to design specific AQAP measures targeting a reduction in emissions from specific vehicle types.

It should be noted that emission sources of NO<sub>2</sub> are dominated by a combination of direct NO<sub>2</sub> (f-NO<sub>2</sub>) and oxides of nitrogen (NO<sub>x</sub>), the latter of which is chemically unstable and rapidly oxidised upon release to form NO<sub>2</sub>. Reducing levels of NO<sub>x</sub> emissions therefore reduces levels of NO<sub>2</sub>. As a consequence, the source apportionment study has considered the emissions of NO<sub>x</sub> which are assumed to be representative of the main sources of NO<sub>2</sub>.

Table 5.3 and Table 5.4 detail the source apportionment results for NOx concentrations at modelled receptors for three scenarios:

- The average NO<sub>x</sub> contributions across all modelled receptors. This provides useful information when considering possible action measures to test and adopt. It will however understate road NO<sub>x</sub> concentrations in problem areas;
- The average NO<sub>x</sub> contributions within the AQMA. This will inform potential prominent NO<sub>x</sub> contributors present within the identified area of exceedance and therefore be useful when testing and adopting action measures; and
- The location where the maximum road NO<sub>x</sub> concentration has been predicted within the AQMA. This is likely to be in the area of most concern within the proposed AQMA and so a good place to test and adopt action measures. Any gains predicted by action measures are however likely to be greatest at this location and so would not represent gains across the whole modelled area.

When considering the average  $NO_{\text{x}}$  concentration across all modelled receptor locations, the following observations were found:

- Road traffic accounts for 35.4µg/m<sup>3</sup> (65.9%) of total NO<sub>x</sub> (53.7µg/m<sup>3</sup>), with background accounting for 18.3µg/m<sup>3</sup> (34.1%);
- Of the total road NO<sub>x</sub>, Cars are highest contributing vehicle class accounting for 56.2% (19.9µg/m<sup>3</sup>);
- LGVs are found to be the second highest contributing vehicle class accounting for 27.4% (9.7µg/m<sup>3</sup>);
- HGVs and Buses account for similar total road NO<sub>x</sub> (HGVs 7.7% (2.7µg/m<sup>3</sup>) and Buses 8.6% (3.0µg/m<sup>3</sup>)); whereas
- Motorcycles are found to contribute <1%.

When considering the average NO<sub>x</sub> concentration at modelled receptor locations within the AQMA, the following observations were found:



- The predicted road traffic NO<sub>x</sub> percentage contribution is similar in comparison to all receptor locations, accounting for 70.4% (48µg/m<sup>3</sup>) of the total NO<sub>x</sub> (68.3µg/m<sup>3</sup>), with the background component percentage contribution 29.6% (20.2µg/m<sup>3</sup>);
- Of the total road NO<sub>x</sub>, Cars account for a similar contribution in comparison to contributions modelled at all receptor locations, and are still found to be the highest contributing vehicle class accounting for 56.0% (26.9µg/m<sup>3</sup>);
- LGVs are similarly found to be the second highest contributing vehicle class, with a consistent percentage weighting observed (28.6% (13.7µg/m<sup>3</sup>));
- Percentage contributions from HGVs were also found to be similar in comparison to contributions modelled for all receptor locations, and remain third in terms of overall ranking (8.1% (3.9µg/m<sup>3</sup>)) - suggesting a marginal influence of HGVs in exceedance areas across the modelled domain; and
- Percentage contributions from Buses and Motorcycles remain stable in comparison to contributions modelled at all receptor locations (Buses – 7.2% (3.4µg/m<sup>3</sup>) and Motorcycles <1%).</li>

When considering the modelled receptor location at which the maximum road NO $_{\rm x}$  concentration has been predicted:

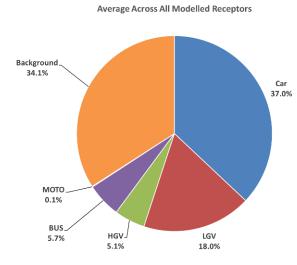
- Road traffic accounts for 81.3% (91.5µg/m<sup>3</sup>) of the total averaged NO<sub>x</sub> (112.6µg/m<sup>3</sup>) highlighting contributions from road traffic to be the core component in areas of exceedance;
- Of the total road NO<sub>x</sub>, Cars are found to be the highest contributing vehicle class accounting for 54.3% (49.7µg/m<sup>3</sup>). However, in comparison to contributions within the AQMA as a whole and across the whole domain, this percentage is slightly lower, suggesting influence from other vehicle classes in this location;
- LGVs are found to be the second highest contributing vehicle class accounting for 28.5% (26.1µg/m<sup>3</sup>). This observed percentage contribution is consistent with observations found across the whole domain and within the AQMA;
- HGVs account for 8.2% (7.5µg/m<sup>3</sup>) of the total road NO<sub>x</sub>. This is an increase in comparison to the contribution observed across the whole domain and suggests an influence on exceedance within the AQMA;
- Buses account for 8.8% (8.1µg/m<sup>3</sup>) of the total road NO<sub>x</sub> a slight increase in percentage contribution in comparison to the wider domain - suggesting an influence on exceedance within the AQMA; and
- Motorcycles are similarly found to contribute <1%.</li>

The NO<sub>x</sub> source apportionment exercise demonstrates a largely consistent ranking of contributing vehicle classes exhibited throughout all scenarios (Cars, LGVs, HGVs, Buses and Coaches, and Motorcycles), where Cars primarily (alongside LGVs) are found to be the main contributors to total road NO<sub>x</sub> concentrations across Cheltenham.

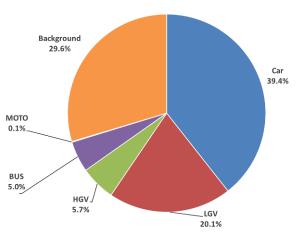
Whilst comparing modelled contributions at identified receptor locations within the AQMA against the wider modelled domain, Cars were observed to employ a slightly reduced influence on total road NO<sub>x</sub> concentrations within the AQMA. Slight increases to total road NO<sub>x</sub> contributions from both LGVs and HGVs were observed, demonstrating a larger degree of influence. Increases to both LGV



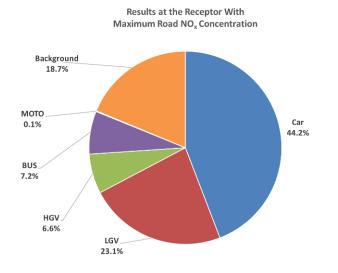
and HGV total road NO<sub>x</sub> contributions within the AQMA is owed to the strategic road network the area of exceedance is centred on (i.e. the A4019 – Tewkesbury Road, A4019 – High Street, A4019 – Swindon Road and High Street) – which connects the M5 (among other high capacity roads) to the Town Centre.


However, whilst taking the above into consideration, the observed variance in percentage contributions between vehicle classes largely didn't disrupt the observed ranking of contributing vehicle class exhibited throughout all scenarios. This suggests volume of traffic is considered to be the key contributor to elevated levels of  $NO_2$  annual mean concentrations within the AQMA.




| Results                                                           | All<br>Vehicles                          | Cars      | LGV  | HGV | Bus &<br>Coach | Motorcycle | Background |  |  |
|-------------------------------------------------------------------|------------------------------------------|-----------|------|-----|----------------|------------|------------|--|--|
| Average Across all Modelled R                                     | eceptors                                 |           |      |     |                |            |            |  |  |
| NO <sub>x</sub> Concentration (µg/m <sup>3</sup> )                | 35.4                                     | 19.9      | 9.7  | 2.7 | 3.0            | 0.1        | 18.3       |  |  |
| Percentage of total NO <sub>x</sub> (%)                           | 65.9                                     | 37.0      | 18.0 | 5.1 | 5.7            | 0.1        | 34.1       |  |  |
| Percentage Road Contribution to total $NO_x(\%)$                  | 100.0                                    | 56.2      | 27.4 | 7.7 | 8.6            | 0.2        | -          |  |  |
| Average Across all Receptors                                      | Average Across all Receptors within AQMA |           |      |     |                |            |            |  |  |
| NO <sub>x</sub> Concentration (µg/m <sup>3</sup> )                | 48.0                                     | 26.9      | 13.7 | 3.9 | 3.4            | 0.1        | 20.2       |  |  |
| Percentage of total NO <sub>x</sub> (µg/m <sup>3</sup> )          | 70.4                                     | 39.4      | 20.1 | 5.7 | 5.0            | 0.1        | 29.6       |  |  |
| Percentage Road Contribution to total $NO_x$ (µg/m <sup>3</sup> ) | 100.0                                    | 56.0      | 28.6 | 8.1 | 7.2            | 0.2        | -          |  |  |
| At Receptor with Maximum Ro                                       | ad NO <sub>x</sub> Cond                  | entration |      |     |                |            |            |  |  |
| NO <sub>x</sub> Concentration (µg/m <sup>3</sup> )                | 91.5                                     | 49.7      | 26.1 | 7.5 | 8.1            | 0.2        | 21.1       |  |  |
| Percentage of total NO <sub>x</sub> (µg/m <sup>3</sup> )          | 81.3                                     | 44.2      | 23.1 | 6.6 | 7.2            | 0.1        | 18.7       |  |  |
| Percentage Road Contribution to total $NO_x$ (µg/m <sup>3</sup> ) | 100.0                                    | 54.3      | 28.5 | 8.2 | 8.8            | 0.2        | -          |  |  |

### Table 5.3 – Detailed Source Apportionment of NO<sub>x</sub> Concentrations


### Table 5.4 – Detailed Source Apportionment of NO<sub>x</sub> Concentrations













# 6 Conclusions and Recommendations

The dispersion modelling exercise undertaken has provided the following updated perspective on NO<sub>2</sub> challenges within Cheltenham Town Centre and its associated strategic roads.

## 6.1 **Predicted Concentrations**

The model suggests that the  $40\mu g/m^3 NO_2$  annual mean AQS objective is exceeded at a total of 14 (5.6 %) receptor locations, with 26 (10.4 %) further locations within 10 % of the objective.

All of receptors reporting NO<sub>2</sub> annual mean concentrations to be above or within 10 % of the AQS objective limit are either located within the existing AQMA or are concentrated to roadside locations of junctions where key arterial roads meet and form the main transportation network within the region.

The highest annual mean concentration of NO<sub>2</sub> was recorded at Receptor 60 with a concentration of 56.7 $\mu$ g/m<sup>3</sup>. Receptor 60 is located along a façade of a residential property which immediately fronts onto a stretch of the A4019 – High Street. This location is susceptible to congestion due to the convergence of high capacity and town centre roads (M5, A4019 – Tewkesbury Road, A4019 – High Street, A4019 – Swindon Road and High Street).

The empirical relationship given in LAQM.TG(16)<sup>1</sup> states that exceedances of the 1-hour mean objective for NO<sub>2</sub> is only likely to occur where annual mean concentrations are  $60\mu g/m^3$  or above at a location of relevant exposure (Table 2.1). Given the NO<sub>2</sub> annual mean concentration recorded at all receptors is below  $60\mu g/m^3$ , exceedances of the hourly NO<sub>2</sub> AQS objective are unlikely.

The following areas were identified to report modelled concentrations in exceedance of the annual mean NO<sub>2</sub> AQS objective:

- Within the existing AQMA, the continuous stretch of road spanning A4019 Tewkesbury Road, A4019 Poole Way and A4019 Swindon Road north of the Town Centre; and
- Along stretches of other arterial roads connecting to the Town Centre (A4013 Princess Elizabeth Way, Benhall Roundabout, A46 London Road/Berkley Street intersection, and A46 Shurdington Road).

The following additional areas were identified to report modelled concentrations within 10% of the AQS objective:

- A4019 Fairview Road, A46 Clarence Road and Albion Street;
- A46 London Road;
- Bath Road;
- A40 Lansdowne Road/Suffolk Road intersection;
- A40 Gloucester Road/B4633 Gloucester Road intersection;
- A4013 Princess Elizabeth Way/Marsland Road/Edinburgh Place intersection.

An expansion of the Council's monitoring network is intended so as to include those locations outside of the AQMA that have been identified to have a modelled exceedance and/or near exceedance, in order to validate the modelled findings.



 $PM_{10}$  and  $PM_{2.5}$  concentrations have also been predicted as part of the modelling assessment. No modelled receptors recorded concentrations in exceedance of either of the annual mean objectives for these pollutants. The highest modelled  $PM_{10}$  concentration was 22.1µg/m<sup>3</sup> at R60. The highest modelled  $PM_{2.5}$  concentration was 14.3µg/m<sup>3</sup> at R60.

## 6.2 Source Apportionment

To help inform the development of measures as part of a future AQAP, a NO<sub>x</sub> source apportionment exercise was undertaken to provide an understanding of any potential similarities in vehicle emission contributors within the AQMA.

The NO<sub>x</sub> source apportionment exercise demonstrates a largely consistent ranking of contributing vehicle class exhibited throughout all scenarios (Cars, LGVs, HGVs, Buses and Coaches and Motorcycles), where Cars and LGVs are found to be the main contributors to total road NO<sub>x</sub> concentrations across Cheltenham.

Whilst comparing modelled contributions at the identified worst-case receptor location within the AQMA (Receptor 60) against the wider modelled domain, cars were observed to employ a slightly reduced influence total road NO<sub>x</sub> concentrations within the AQMA. Whilst increases to total road NO<sub>x</sub> contributions from LGVs, HGVs and buses were observed. The increase in contributions from these vehicle types to total road NO<sub>x</sub> within the AQMA is owed to the arterial network the area of exceedance is centred on (i.e. the A4019 – Tewkesbury Road, A4019 – High Street, A4019 – Swindon Road and High Street) – which connects the M5 (among other high capacity roads) to the Town Centre.

## 6.3 Future Recommendations

Following the completion of the detailed modelling assessment, the following recommendations are made:

- Continue to monitor NO<sub>2</sub> across the Borough;
- Deploy and/or relocate existing monitoring within the Borough to the other locations predicted to be in exceedance, or near exceedance, of the NO<sub>2</sub> annual mean AQS objective limit, in order to validate modelled findings; and
- Based on source apportionment results, any future intervention measures should be targeted at reducing vehicle emissions from all vehicle types, notably Cars and LGVs, which are both observed to be the two largest contributors to total vehicle emissions in areas of exceedance.

Following the modelling exercise, it is hoped that the following topics can be discussed with air quality stakeholders to aid development of the AQAP:

- Possible action plan measures being considered by the Council; and
- Ability to test the effects of these measures using the current dispersion model set up.



Appendices



# Appendix A – ADMS Model Verification

The ADMS-Roads dispersion model has been widely validated for this type of assessment and is specifically listed in the Defra's LAQM.TG(16)<sup>1</sup> guidance as an accepted dispersion model.

Model validation undertaken by the software developer (CERC) will not have included validation in the vicinity of the proposed development site. It is therefore necessary to perform a comparison of modelled results with local monitoring data at relevant locations. This process of verification attempts to minimise modelling uncertainty and systematic error by correcting modelled results by an adjustment factor to gain greater confidence in the final results.

The predicted results from a dispersion model may differ from measured concentrations for a large number of reasons, including uncertainties associated with:

- Background concentration estimates;
- Source activity data such as traffic flows and emissions factors;
- Monitoring data, including locations; and
- Overall model limitations.

Model verification is the process by which these and other uncertainties are investigated and where possible minimised. In reality, the differences between modelled and monitored results are likely to be a combination of all of these aspects.

Model setup parameters and input data were checked prior to running the models in order to reduce these uncertainties. The following were checked to the extent possible to ensure accuracy:

- Traffic data;
- Distance between sources and monitoring as represented in the model;
- Speed estimates on roads;
- Background monitoring and background estimates; and
- Monitoring data.

The traffic data for this assessment has been collated using a combination of data provided by the highways department at GCC and DfT traffic count data, as outlined in Section 4.1.

During 2019, concentrations of NO<sub>2</sub> were monitored at 27 sites across Cheltenham, comprising 29 diffusion tubes and one continuous monitor (CM1), with the provision of a triplicate colocation study (Table A.1) – all undertaken at roadside/kerbside locations. The following six passive monitoring locations tubes were sited outside of the modelled road network so were therefore removed from the verification:

- Site 1;
- Site 3;
- Site 22;



- Site 23;
- Site 24; and
- Site 25.

The details of the LAQM monitoring sites considered for the purposes of model verification are presented in Table A.1 below.

| Site ID | OS Grid F | Reference | 2019 Annual Mean     | 2019 Data Capture (%)  |
|---------|-----------|-----------|----------------------|------------------------|
| Site ib | х         | Y         | (µg/m <sup>3</sup> ) | 2019 Data Capture (76) |
| 2       | 394724    | 222320    | 27.6                 | 100                    |
| 4       | 394237    | 223006    | 43.1                 | 100                    |
| 5       | 394350    | 222923    | 46.5                 | 100                    |
| 6       | 394738    | 222888    | 40.3                 | 100                    |
| 7,8,9   | 394760    | 222878    | 35.1                 | 91.7                   |
| 10      | 394830    | 222845    | 39.2                 | 100                    |
| 11      | 395110    | 222670    | 34.1                 | 100                    |
| 12      | 395210    | 222618    | 34.4                 | 91.7                   |
| 13      | 395207    | 222465    | 30.4                 | 100                    |
| 14      | 395362    | 222000    | 37.4                 | 100                    |
| 15      | 395182    | 222183    | 28.5                 | 100                    |
| 16      | 395146    | 222149    | 34.4                 | 100                    |
| 18      | 395660    | 221670    | 37.6                 | 91.7                   |
| 19      | 393296    | 222170    | 33.4                 | 83.3                   |
| 20      | 392912    | 221862    | 36.2                 | 100                    |
| 21      | 394809    | 222060    | 23.9                 | 100                    |
| 26      | 394902    | 223004    | 31.3                 | 100                    |
| 27      | 395156    | 221866    | 27.6                 | 91.7                   |
| 28      | 393081    | 223643    | 38.2                 | 100                    |
| 29      | 392066    | 222540    | 33.7                 | 100                    |
| 30      | 394810    | 222439    | 31.6*                | 58.3                   |
| CM1     | 394760    | 222878    | 36.0                 | 97.3                   |

#### Table A.1 – Local Monitoring Data Available for Model Verification

\*Annualised concentration.

## **NO<sub>2</sub> Verification Calculations**

The verification of the modelling output was performed in accordance with the methodology provided in Chapter 7 of LAQM.TG $(16)^{1}$ .

For the verification and adjustment of NO<sub>x</sub>/NO<sub>2</sub>, the 2019 monitoring data presented in Table A.1 was used. One passive monitoring location (Site 30) reported data capture to be below 75% for the duration of 2019, with annualisation subsequently performed to derive the reported NO<sub>2</sub> annual mean concentration.

Site 19 was removed from the verification process as the results presented were anomalous and it was not possible to confirm the location of the monitoring following a desktop review. In addition, passive monitoring location 7,8,9 has also been removed from the verification process due to being co-located with continuous monitor CM1. As a bias adjustment factor derived from CM1 was used to adjust all diffusion tubes in 2019, it is considered that the NO<sub>2</sub> concentration recorded by CM1 is more representative of the location than that at 7,8,9 and the automatic monitoring is generally considered more reliable than diffusion tube monitoring.



Verification was completed using the 2019 (2018 reference year) Defra background mapped concentrations for the relevant 1km x 1km grid squares within Cheltenham (i.e. those within which the model verification locations are located), as displayed in Table B.1 of the Appendices.

Table A.2 below shows an initial comparison of the monitored and unverified modelled NO<sub>2</sub> results for the year 2019, in order to determine if verification and adjustment was required.

| Site ID | Background<br>NO <sub>2</sub> | Monitored total<br>NO <sub>2</sub> (μg/m <sup>3</sup> ) | Unverified Modelled<br>total NO₂ (μg/m³) | Difference (modelled vs. monitored) (%) |
|---------|-------------------------------|---------------------------------------------------------|------------------------------------------|-----------------------------------------|
| CM1     | 15.3                          | 36.0                                                    | 20.8                                     | -42.2                                   |
| 2       | 15.3                          | 27.6                                                    | 18.5                                     | -32.9                                   |
| 4       | 12.1                          | 43.1                                                    | 20.6                                     | -52.3                                   |
| 5       | 15.3                          | 46.5                                                    | 23.0                                     | -50.7                                   |
| 6       | 15.3                          | 40.3                                                    | 21.3                                     | -47.0                                   |
| 10      | 15.3                          | 39.2                                                    | 20.7                                     | -47.3                                   |
| 11      | 14.2                          | 34.1                                                    | 21.3                                     | -37.8                                   |
| 12      | 14.2                          | 34.4                                                    | 19.1                                     | -44.4                                   |
| 13      | 14.2                          | 30.4                                                    | 17.3                                     | -43.2                                   |
| 14      | 12.9                          | 37.4                                                    | 21.5                                     | -42.5                                   |
| 15      | 14.2                          | 28.5                                                    | 20.1                                     | -29.4                                   |
| 16      | 14.2                          | 34.4                                                    | 21.6                                     | -37.2                                   |
| 18      | 12.9                          | 37.6                                                    | 22.8                                     | -39.5                                   |
| 20      | 12.6                          | 36.2                                                    | 18.9                                     | -47.9                                   |
| 21      | 15.3                          | 23.9                                                    | 19.5                                     | -18.5                                   |
| 26      | 12.1                          | 31.3                                                    | 15.5                                     | -50.5                                   |
| 27      | 12.9                          | 27.6                                                    | 18.2                                     | -33.9                                   |
| 28      | 14.3                          | 38.2                                                    | 20.0                                     | -47.7                                   |
| 29      | 12.6                          | 33.7                                                    | 17.5                                     | -48.0                                   |
| 30      | 15.3                          | 31.6                                                    | 18.6                                     | -41.3                                   |

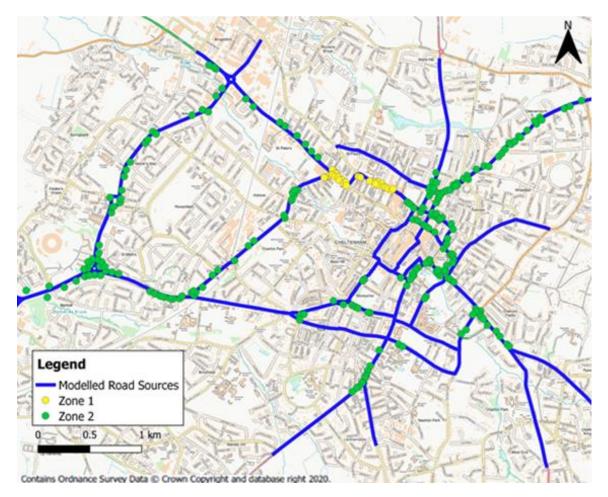
#### Table A.2 – Comparison of Unverified Modelled and Monitored NO2 Concentrations

The data in the table above shows that the model was under predicting at all verification points, with the highest under prediction between the modelled and monitored concentrations observed at Site 4 (-52.3 %). At this stage all model inputs were checked to ensure their accuracy, this includes road and monitoring sire geometry, traffic data, link emission rates, 2019 monitoring results, background concentrations and modelling features such as street canyons. Following a level of QA/QC completed upon the model, no further improvement of the modelled results could be obtained on this occasion. The difference between modelled and monitored concentrations was greater than - 25% at the majority of locations, therefore adjustment of the results was necessary. The relevant data was then gathered to allow the adjustment factor to be calculated.

It was also decided that, for the purpose of verification, the model domain would be split into two distinct areas, in order to improve the robustness of the verification factors output and provide a more location specific factor for the AQMA. They are shown in



Figure A.1, and are listed as follows:


- Zone 1 Areas within and surrounding the AQMA; and
- Zone 2 All other areas within the model domain.

Model adjustment needs to be undertaken based on  $NO_x$  and not  $NO_2$ . For the Council operated monitoring results used in the calculation of the model adjustment,  $NO_x$  was derived from  $NO_2$ ; these calculations were undertaken using a spreadsheet tool available from the LAQM website<sup>17</sup>.

 $<sup>^{17}\</sup> http://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html \#NOxNO2 calc$ 



## Figure A.1 – Verification Zones





## Zone 1 Verification (AQMA)

Table A.3 provides the relevant data required for Zone 1 to calculate the model adjustment based on regression of the modelled and monitored road source contribution to NO<sub>x</sub>.

Figure A.2 provides a comparison of the Modelled Road Contribution NO<sub>x</sub> versus Monitored Road Contribution NO<sub>x</sub>, and the equation of the trend line based on linear regression through zero. The Total Monitored NO<sub>x</sub> concentration has been derived by back-calculating NO<sub>x</sub> from the NO<sub>x</sub>/NO<sub>2</sub> empirical relationship using the spreadsheet tool available from Defra's website. The equation of the trend lines presented in Figure A.2 gives an adjustment factor for the modelled results of 4.588.

#### Table A.3 – Data Required for Adjustment Factor Calculation – Zone 1

| Site ID | Monitored<br>total NO₂<br>(µg/m³) | Monitored<br>total NO <sub>x</sub><br>(µg/m³) | Background<br>NO₂ (µg/m³) | $NO(\bar{u}\alpha/m^3)$ | NO. (total - |      | Modelled<br>road<br>contribution<br>NO <sub>x</sub><br>(excludes<br>background)<br>(μg/m <sup>3</sup> ) |
|---------|-----------------------------------|-----------------------------------------------|---------------------------|-------------------------|--------------|------|---------------------------------------------------------------------------------------------------------|
| CM1     | 36.0                              | 62.5                                          | 15.3                      | 21.1                    | 20.7         | 41.4 | 10.3                                                                                                    |
| DT4     | 43.1                              | 80.3                                          | 12.1                      | 16.2                    | 30.9         | 64.0 | 13.0                                                                                                    |
| DT5     | 46.5                              | 86.8                                          | 15.3                      | 21.1                    | 31.2         | 65.7 | 14.4                                                                                                    |
| DT6     | 40.3                              | 72.0                                          | 15.3                      | 21.1                    | 25.0         | 50.9 | 11.3                                                                                                    |
| DT10    | 39.2                              | 69.7                                          | 15.3                      | 21.1                    | 23.9         | 48.6 | 10.1                                                                                                    |



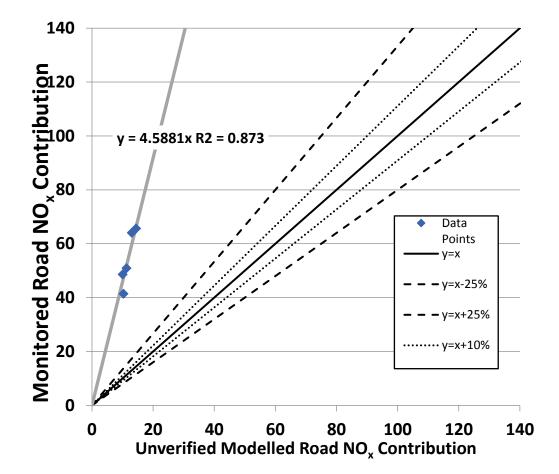



Figure A.2 – Zone 1 Comparison of the Modelled Road Contribution  $NO_x$  versus Monitored Road Contribution  $NO_x$ 

 Table A.4 – Zone 1 Adjustment Factor and Comparison of Verified Results against

 Monitoring Results

| Site ID | Ratio of<br>monitored<br>road<br>contribution<br>NO <sub>x</sub> / modelled<br>road<br>contribution<br>NOx | contribution | Adjusted<br>modelled<br>road<br>contribution<br>NO <sub>x</sub> (µg/m <sup>3</sup> ) | Adjusted<br>modelled<br>total NO <sub>x</sub><br>(including | Modelled total<br>NO <sub>2</sub> (based<br>upon<br>empirical NO <sub>x</sub><br>/ NO <sub>2</sub><br>relationship)<br>(µg/m <sup>3</sup> ) | Monitored<br>total NO₂<br>(μg/m³) | Difference<br>(adjusted<br>modelled<br>NO <sub>2</sub> vs.<br>monitored<br>NO <sub>2</sub> ) (%) |
|---------|------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| CM1     | 4.0                                                                                                        |              | 47.3                                                                                 | 68.4                                                        | 38.7                                                                                                                                        | 36.0                              | 7.4                                                                                              |
| DT4     | 4.6                                                                                                        |              | 59.8                                                                                 | 76.0                                                        | 41.3                                                                                                                                        | 43.1                              | -4.2                                                                                             |
| DT5     | 4.6                                                                                                        | 4.588        | 66.3                                                                                 | 87.4                                                        | 46.8                                                                                                                                        | 46.5                              | 0.5                                                                                              |
| DT6     | 4.5                                                                                                        |              | 51.9                                                                                 | 73.0                                                        | 40.7                                                                                                                                        | 40.3                              | 1.1                                                                                              |
| DT10    | 4.6                                                                                                        |              | 46.1                                                                                 | 67.2                                                        | 38.1                                                                                                                                        | 39.2                              | -2.8                                                                                             |



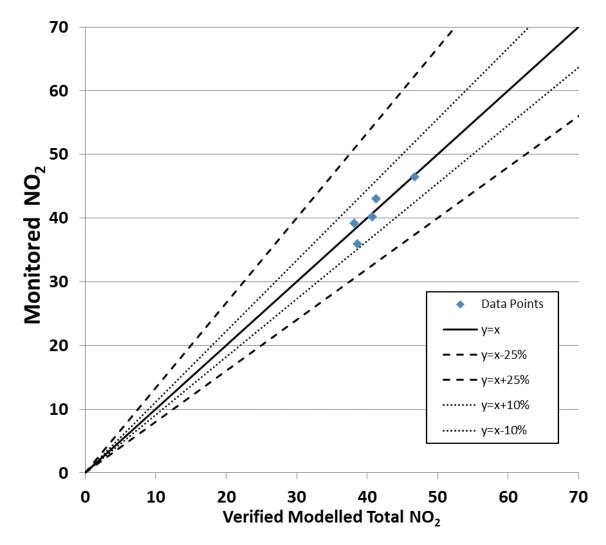



Figure A.3 – Zone 1 Comparison of the Verified Modelled Total NO<sub>2</sub> versus Monitored NO<sub>2</sub>

Table A.4 and Figure A.3 show the ratios between monitored and modelled NO<sub>2</sub> for each monitoring location after using the calculated adjustment factor. LAQM.TG(16)<sup>1</sup> states that:

"In order to provide more confidence in the model predictions and the decisions based on these, the majority of results should be within 25% of the monitored concentrations, ideally within 10%."

The sites show good agreement between the ratios of monitored and modelled NO<sub>2</sub>, It can be seen that all of the verification points lie within the  $\pm 10\%$  tolerance as detailed in LAQM.TG(16).

A factor of 4.588 reduces the Root Mean Square Error (RMSE) from a value of 20.0 to 1.5, which is in line with the guidance value of 4  $\mu$ g/m<sup>3</sup> as stated within LAQM.TG(16).

The 4.588 Zone 1 adjustment factor was applied to the road contribution  $NO_x$  concentrations predicted by the model to arrive at the final  $NO_2$  concentrations in and around the AQMA (Figure A.1).



## Zone 2 Verification (All Other Areas)

Table A.5 provides the relevant data required for Zone 2 to calculate the model adjustment based on regression of the modelled and monitored road source contribution to NO<sub>x</sub>.

Figure A.4 provides a comparison of the Modelled Road Contribution NO<sub>x</sub> versus Monitored Road Contribution NO<sub>x</sub>, and the equation of the trend line based on linear regression through zero. The Total Monitored NO<sub>x</sub> concentration has been derived by back-calculating NO<sub>x</sub> from the NO<sub>x</sub>/NO<sub>2</sub> empirical relationship using the spreadsheet tool available from Defra's website. The equation of the trend lines presented in Figure A.4 gives an adjustment factor for the modelled results of 3.725.

| Site ID | Monitored<br>total NO₂<br>(µg/m³) | Monitored<br>total NO <sub>x</sub><br>(µg/m³) |      | NO <sub>x</sub> (µg/m <sup>3</sup> ) | Monitored<br>road<br>contribution<br>NO₂ (total -<br>background)<br>(μg/m³) | NO <sub>x</sub> (total - | NUx<br>(excludes |
|---------|-----------------------------------|-----------------------------------------------|------|--------------------------------------|-----------------------------------------------------------------------------|--------------------------|------------------|
| CM1     | 36.0                              | 62.5                                          | 15.3 | 21.1                                 | 20.7                                                                        | 41.4                     | 10.3             |
| DT2     | 27.6                              | 44.9                                          | 15.3 | 21.1                                 | 12.3                                                                        | 23.8                     | 6.1              |
| DT4     | 43.1                              | 80.3                                          | 12.1 | 16.2                                 | 30.9                                                                        | 64.0                     | 13.0             |
| DT5     | 46.5                              | 86.8                                          | 15.3 | 21.1                                 | 31.2                                                                        | 65.7                     | 14.4             |
| DT6     | 40.3                              | 72.0                                          | 15.3 | 21.1                                 | 25.0                                                                        | 50.9                     | 11.3             |
| DT10    | 39.2                              | 69.7                                          | 15.3 | 21.1                                 | 23.9                                                                        | 48.6                     | 10.1             |
| DT11    | 34.1                              | 59.0                                          | 14.2 | 19.3                                 | 20.0                                                                        | 39.7                     | 13.4             |
| DT12    | 34.4                              | 59.4                                          | 14.2 | 19.3                                 | 20.2                                                                        | 40.2                     | 9.4              |
| DT13    | 30.4                              | 51.0                                          | 14.2 | 19.3                                 | 16.3                                                                        | 31.8                     | 5.7              |
| DT14    | 37.4                              | 66.7                                          | 12.9 | 17.4                                 | 24.5                                                                        | 49.3                     | 16.1             |
| DT15    | 28.5                              | 47.0                                          | 14.2 | 19.3                                 | 14.3                                                                        | 27.8                     | 11.1             |
| DT16    | 34.4                              | 59.5                                          | 14.2 | 19.3                                 | 20.2                                                                        | 40.2                     | 14.0             |
| DT18    | 37.6                              | 67.3                                          | 12.9 | 17.4                                 | 24.7                                                                        | 49.9                     | 18.6             |
| DT20    | 36.2                              | 64.2                                          | 12.6 | 16.9                                 | 23.6                                                                        | 47.4                     | 11.7             |
| DT21    | 23.9                              | 37.4                                          | 15.3 | 21.1                                 | 8.6                                                                         | 16.3                     | 6.1              |
| DT26    | 31.3                              | 53.7                                          | 12.1 | 16.2                                 | 19.1                                                                        | 37.5                     | 6.1              |
| DT27    | 27.6                              | 45.6                                          | 12.9 | 17.4                                 | 14.6                                                                        | 28.2                     | 9.8              |
| DT28    | 38.2                              | 67.9                                          | 14.3 | 19.5                                 | 23.9                                                                        | 48.3                     | 10.1             |
| DT29    | 33.7                              | 58.8                                          | 12.6 | 16.8                                 | 21.2                                                                        | 42.0                     | 9.0              |
| DT30    | 31.6                              | 53.1                                          | 15.3 | 21.1                                 | 16.3                                                                        | 32.0                     | 6.2              |

#### Table A.5 – Data Required for Adjustment Factor Calculation – Zone 2



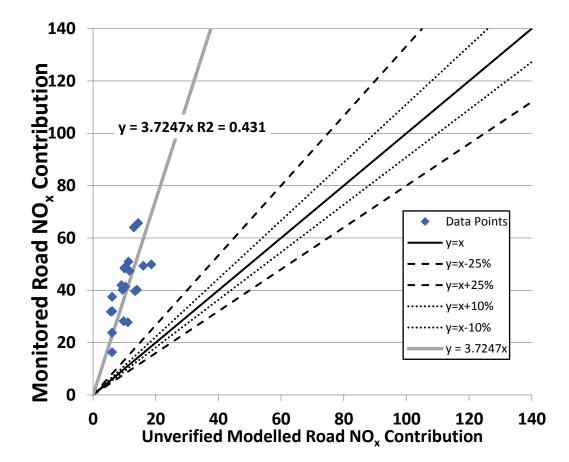
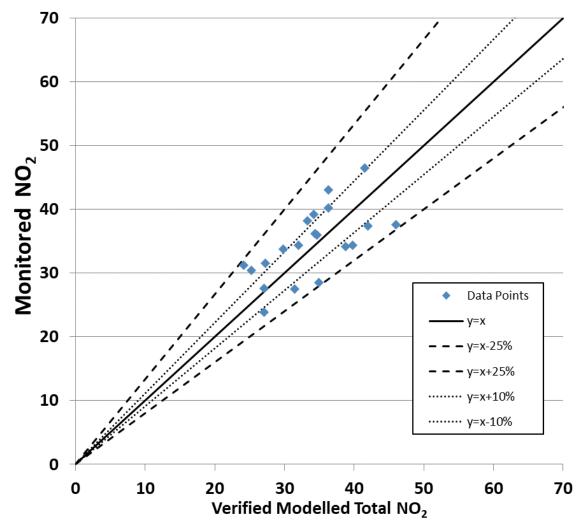



Figure A.4 – Zone 2 Comparison of the Modelled Road Contribution  $NO_x$  versus Monitored Road Contribution  $NO_x$ 


Table A.6 – Zone 2 Adjustment Factor and Comparison of Verified Results against Monitoring Results

| Site ID | Ratio of<br>monitored<br>road<br>contribution<br>NO <sub>x</sub> / modelled<br>road<br>contribution<br>NOx | Adjustment<br>factor for<br>modelled<br>road<br>contribution<br>NO <sub>x</sub> | Adjusted<br>modelled<br>road<br>contribution<br>NO <sub>x</sub> (µg/m³) | Adjusted<br>modelled<br>total NO <sub>x</sub> | Modelled total<br>NO <sub>2</sub> (based<br>upon<br>empirical NO <sub>x</sub><br>/ NO <sub>2</sub><br>relationship)<br>(µg/m <sup>3</sup> ) | Monitored | Difference<br>(adjusted<br>modelled<br>NO <sub>2</sub> vs.<br>monitored<br>NO <sub>2</sub> ) (%) |
|---------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------|
| CM1     | 4.0                                                                                                        |                                                                                 | 38.4                                                                    | 59.5                                          | 34.6                                                                                                                                        | 36.0      | -3.8                                                                                             |
| DT2     | 4.0                                                                                                        |                                                                                 | 22.7                                                                    | 43.8                                          | 27.1                                                                                                                                        | 27.6      | -1.9                                                                                             |
| DT4     | 4.5                                                                                                        |                                                                                 | 48.5                                                                    | 64.8                                          | 36.3                                                                                                                                        | 43.1      | -15.6                                                                                            |
| DT5     | 4.5                                                                                                        |                                                                                 | 53.8                                                                    | 74.9                                          | 41.5                                                                                                                                        | 46.5      | -10.8                                                                                            |
| DT6     | 4.5                                                                                                        |                                                                                 | 42.2                                                                    | 63.3                                          | 36.3                                                                                                                                        | 40.3      | -9.8                                                                                             |
| DT10    | 4.6                                                                                                        |                                                                                 | 37.5                                                                    | 58.6                                          | 34.2                                                                                                                                        | 39.2      | -12.9                                                                                            |
| DT11    | 4.2                                                                                                        | 3.725                                                                           | 49.9                                                                    | 69.1                                          | 38.7                                                                                                                                        | 34.1      | 13.4                                                                                             |
| DT12    | 4.2                                                                                                        |                                                                                 | 35.2                                                                    | 54.4                                          | 32.0                                                                                                                                        | 34.4      | -6.8                                                                                             |
| DT13    | 4.3                                                                                                        |                                                                                 | 21.2                                                                    | 40.5                                          | 25.3                                                                                                                                        | 30.4      | -17.0                                                                                            |
| DT14    | 4.0                                                                                                        |                                                                                 | 59.8                                                                    | 77.2                                          | 42.0                                                                                                                                        | 37.4      | 12.2                                                                                             |
| DT15    | 3.9                                                                                                        |                                                                                 | 41.4                                                                    | 60.7                                          | 34.9                                                                                                                                        | 28.5      | 22.6                                                                                             |
| DT16    | 3.8                                                                                                        |                                                                                 | 52.2                                                                    | 71.4                                          | 39.8                                                                                                                                        | 34.4      | 15.6                                                                                             |
| DT18    | 3.6                                                                                                        |                                                                                 | 69.3                                                                    | 86.7                                          | 46.0                                                                                                                                        | 37.6      | 22.1                                                                                             |
| DT20    | 3.6                                                                                                        |                                                                                 | 43.4                                                                    | 60.3                                          | 34.4                                                                                                                                        | 36.2      | -4.9                                                                                             |



| Site ID | Ratio of<br>monitored<br>road<br>contribution<br>NO <sub>x</sub> / modelled<br>road<br>contribution<br>NOx | <br>Adjusted<br>modelled<br>road<br>contribution<br>NO <sub>x</sub> (µg/m <sup>3</sup> ) | Adjusted<br>modelled<br>total NO <sub>x</sub> | Modelled total<br>NO <sub>2</sub> (based<br>upon<br>empirical NO <sub>x</sub><br>/ NO <sub>2</sub><br>relationship)<br>(µg/m <sup>3</sup> ) | Monitored<br>total NO₂<br>(µg/m³) | Difference<br>(adjusted<br>modelled<br>NO <sub>2</sub> vs.<br>monitored<br>NO <sub>2</sub> ) (%) |
|---------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| DT21    | 3.6                                                                                                        | 22.6                                                                                     | 43.7                                          | 27.1                                                                                                                                        | 23.9                              | 13.3                                                                                             |
| DT26    | 3.7                                                                                                        | 22.8                                                                                     | 39.0                                          | 24.1                                                                                                                                        | 31.3                              | -22.9                                                                                            |
| DT27    | 3.6                                                                                                        | 36.4                                                                                     | 53.8                                          | 31.5                                                                                                                                        | 27.6                              | 14.3                                                                                             |
| DT28    | 3.7                                                                                                        | 37.6                                                                                     | 57.1                                          | 33.3                                                                                                                                        | 38.2                              | -12.8                                                                                            |
| DT29    | 3.7                                                                                                        | 33.7                                                                                     | 50.5                                          | 29.9                                                                                                                                        | 33.7                              | -11.5                                                                                            |
| DT30    | 3.7                                                                                                        | 23.0                                                                                     | 44.1                                          | 27.2                                                                                                                                        | 31.6                              | -13.8                                                                                            |





A factor of 3.725 reduces the Root Mean Square Error (RMSE) from a value of 15.5 to 4.8. Ideally, as stated in LAQM.TG(16), an RMSE value of 4  $\mu$ g/m<sup>3</sup> (±10% tolerance) or less would be achieved; however, it can be seen that all of the verification points lie within the ±25% tolerance (10  $\mu$ g/m<sup>3</sup>).



There is therefore considered to be an acceptable level of agreement between the ratios of monitored and modelled  $NO_2$ , given the area over which the borough-wide factor applies.

The 3.725 Zone 2 adjustment factor was applied to the road contribution NO<sub>x</sub> concentrations predicted by the model outside of the AQMA area (see Figure A.1) to arrive at the final NO<sub>x</sub> concentrations.



# Appendix B – Background Concentrations Used

| Grid Square    | 2019 A                  | nnual Mean Backgro                  | ound Concentration (                 | µg/m³) 1                              |
|----------------|-------------------------|-------------------------------------|--------------------------------------|---------------------------------------|
| (E,N)          | Total Background<br>NOx | Total Background<br>NO <sub>2</sub> | Total Background<br>PM <sub>10</sub> | Total Background<br>PM <sub>2.5</sub> |
| 391500, 224500 | 13.6                    | 10.4                                | 13.5                                 | 8.9                                   |
| 392500, 224500 | 14.8                    | 11.2                                | 13.8                                 | 9.2                                   |
| 393500, 224500 | 19.9                    | 14.5                                | 14.3                                 | 9.5                                   |
| 394500, 224500 | 14.2                    | 10.7                                | 14.5                                 | 9.4                                   |
| 395500, 224500 | 13.8                    | 10.4                                | 13.8                                 | 9.0                                   |
| 396500, 224500 | 12.0                    | 9.2                                 | 13.1                                 | 8.8                                   |
| 391500, 223500 | 13.7                    | 10.4                                | 13.9                                 | 9.4                                   |
| 392500, 223500 | 16.3                    | 12.2                                | 14.4                                 | 9.9                                   |
| 393500, 223500 | 19.5                    | 14.3                                | 14.5                                 | 9.9                                   |
| 394500, 223500 | 16.2                    | 12.1                                | 14.4                                 | 9.9                                   |
| 395500, 223500 | 15.5                    | 11.6                                | 13.8                                 | 9.4                                   |
| 396500, 223500 | 17.0                    | 12.6                                | 14.1                                 | 9.7                                   |
| 391500, 222500 | 17.0                    | 12.7                                | 13.9                                 | 9.4                                   |
| 392500, 222500 | 16.8                    | 12.6                                | 14.5                                 | 9.8                                   |
| 393500, 222500 | 18.2                    | 13.4                                | 14.3                                 | 9.9                                   |
| 394500, 222500 | 21.1                    | 15.3                                | 14.6                                 | 9.9                                   |
| 395500, 222500 | 19.3                    | 14.2                                | 14.9                                 | 10.1                                  |
| 396500, 222500 | 14.5                    | 10.9                                | 13.9                                 | 9.6                                   |
| 391500, 221500 | 19.1                    | 14.1                                | 14.6                                 | 9.7                                   |
| 392500, 221500 | 16.9                    | 12.6                                | 14.2                                 | 9.8                                   |
| 393500, 221500 | 16.1                    | 12.1                                | 13.9                                 | 9.5                                   |
| 394500, 221500 | 18.9                    | 14.0                                | 14.2                                 | 9.7                                   |
| 395500, 221500 | 17.4                    | 12.9                                | 14.1                                 | 9.6                                   |
| 396500, 221500 | 14.5                    | 11.0                                | 13.4                                 | 9.1                                   |
| 391500, 220500 | 14.6                    | 11.0                                | 13.8                                 | 9.2                                   |
| 392500, 220500 | 13.8                    | 10.5                                | 13.9                                 | 9.5                                   |
| 393500, 220500 | 13.7                    | 10.4                                | 13.8                                 | 9.3                                   |
| 394500, 220500 | 13.9                    | 10.5                                | 13.7                                 | 9.5                                   |
| 395500, 220500 | 12.3                    | 9.4                                 | 13.1                                 | 9.0                                   |
| 396500, 220500 | 12.4                    | 9.5                                 | 13.2                                 | 9.0                                   |

## Table B.1 – Defra Background Pollutant Concentrations Covering the Modelled Domain

Note:

<sup>1</sup> Values obtained from the 2019 Defra Mapped Background estimates for the relevant 1km x 1km grid squares covering the modelled domain



# Appendix C – Traffic Inputs

### Table C. 1 – Traffic Data used in the Detailed Assessment

| Source                | Traffic Point | Modelled Road Link       | AADT  | HG<br>V<br>(%) | Average<br>Speed (kph) |
|-----------------------|---------------|--------------------------|-------|----------------|------------------------|
| DFT Traffic Data 2019 | 8569          | WnchmbeSt_JctN_A4<br>019 | 7459  | 7.0            | 20.0                   |
| DFT Traffic Data 2019 | 8569          | WnchmbeSt_Rd_1           | 7459  | 7.0            | 17.0                   |
| DFT Traffic Data 2019 | 8569          | WnchmbeSt_Rd_2           | 7459  | 7.0            | 48.3                   |
| DFT Traffic Data 2019 | 47170         | Cirences_Rd_1            | 8713  | 1.9            | 48.3                   |
| DFT Traffic Data 2019 | 47170         | Cirences_Rd_2            | 8713  | 1.9            | 48.3                   |
| DFT Traffic Data 2019 | 47170         | Cirences_JctN_A40        | 8713  | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 47170         | Cirences_JctS_Lyefld     | 8713  | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 47170         | Cirences_Rd_4            | 8713  | 1.9            | 26.6                   |
| DFT Traffic Data 2019 | 47170         | Cirences_Rd_3            | 8713  | 1.9            | 48.3                   |
| DFT Traffic Data 2019 | 47170         | Cirences_JctN_Lyefld     | 8713  | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 48071         | SflkRd_JctW_ThirleR<br>d | 10235 | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 48071         | SflkRd_Rd_1              | 10235 | 1.9            | 48.3                   |
| DFT Traffic Data 2019 | 48071         | SflkRd_JctE_ParkPlc      | 10235 | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 26442         | SflkRd_JctW_ParkPlc      | 10235 | 1.6            | 20.0                   |
| DFT Traffic Data 2019 | 26442         | SflkRd_Rd_2_Xin          | 10235 | 1.6            | 20.0                   |
| DFT Traffic Data 2019 | 26442         | SflkRd_Rd_3              | 10235 | 1.6            | 48.3                   |
| DFT Traffic Data 2019 | 26442         | SflkRd_Rd_4              | 10235 | 1.6            | 28.9                   |
| DFT Traffic Data 2019 | 17981         | A16_Jct_2                | 14470 | 2.3            | 34.6                   |
| DFT Traffic Data 2019 | 17981         | HighSt_Rd_1_Xin          | 14470 | 2.3            | 34.6                   |
| DFT Traffic Data 2019 | 17981         | A16_Jct_1                | 14470 | 2.3            | 34.6                   |
| DFT Traffic Data 2019 | 17981         | HighSt_Rd_2              | 14470 | 2.3            | 34.6                   |
| DFT Traffic Data 2019 | 17981         | A435_JctW_HewlettR<br>d  | 14470 | 2.3            | 34.6                   |
| DFT Traffic Data 2019 | 99377         | EveshamRd_JctN_W<br>elli | 11679 | 4.7            | 20.0                   |
| DFT Traffic Data 2019 | 99377         | EveshamRd_Rd_2           | 11679 | 4.7            | 26.9                   |
| DFT Traffic Data 2019 | 99377         | EveshamRd_Rd_3           | 11679 | 4.7            | 48.3                   |
| DFT Traffic Data 2019 | 48072         | A46_BathRd_Jct_N_<br>A46 | 12337 | 1.4            | 20.0                   |
| DFT Traffic Data 2019 | 48072         | A46_BathRd_Rd_6          | 12337 | 1.4            | 48.3                   |
| DFT Traffic Data 2019 | 48072         | A46_BathRd_Rd_7_<br>Xin  | 12337 | 1.4            | 20.0                   |
| DFT Traffic Data 2019 | 48072         | A46_BathRd_JctS_Sf<br>lk | 12337 | 1.4            | 20.0                   |
| DFT Traffic Data 2019 | 48072         | A46_BathRd_Rd_5          | 12337 | 1.4            | 48.3                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_17_Jct            | 24066 | 2.9            | 20.0                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_8_Jct             | 24066 | 2.9            | 57.9                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_13_Jct            | 24066 | 2.9            | 57.9                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_14_Jct            | 24066 | 2.9            | 20.0                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_11_Jct            | 24066 | 2.9            | 57.9                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_12                | 24066 | 2.9            | 64.4                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_15                | 24066 | 2.9            | 48.3                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_16_2Jct           | 24066 | 2.9            | 24.1                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_5                 | 24066 | 2.9            | 64.4                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_6                 | 24066 | 2.9            | 64.4                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_MJct              | 24066 | 2.9            | 10.0                   |



| Source                | Traffic Point | Modelled Road Link            | AADT  | HG<br>V<br>(%) | Average<br>Speed (kph) |
|-----------------------|---------------|-------------------------------|-------|----------------|------------------------|
| DFT Traffic Data 2019 | 18552         | Tew_Rd_9                      | 24066 | 2.9            | 64.4                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_10_Jct                 | 24066 | 2.9            | 57.9                   |
| DFT Traffic Data 2019 | 18552         | Tew_Rd_7_Jct                  | 24066 | 2.9            | 57.9                   |
| DFT Traffic Data 2019 | 27679         | Tewke_Rd_MJct                 | 26028 | 2.5            | 10.0                   |
| DFT Traffic Data 2019 | 27679         | Tew_Rd_2                      | 26028 | 2.5            | 33.0                   |
| DFT Traffic Data 2019 | 27679         | Tew_Rd_3_Split2_MJ<br>ct      | 26028 | 2.5            | 33.0                   |
| DFT Traffic Data 2019 | 27679         | Tew_Rd                        | 26028 | 2.5            | 64.4                   |
| DFT Traffic Data 2019 | 27679         | Tew_Rd_1                      | 26028 | 2.5            | 64.4                   |
| DFT Traffic Data 2019 | 27679         | Tew_Rd_4_Split2_MJ<br>ct      | 26028 | 2.5            | 33.0                   |
| DFT Traffic Data 2019 | 28699         | A4013_Jct                     | 26222 | 2.3            | 41.0                   |
| DFT Traffic Data 2019 | 28699         | A4013_4                       | 26222 | 2.3            | 41.0                   |
| DFT Traffic Data 2019 | 28699         | A4013_5                       | 26222 | 2.3            | 41.0                   |
| DFT Traffic Data 2019 | 28699         | A4013_2                       | 26222 | 2.3            | 41.0                   |
| DFT Traffic Data 2019 | 28699         | A4013_3<br>CollegeRd_JctS_A43 | 26222 | 2.3            | 41.0                   |
| DFT Traffic Data 2019 | 99604         | 5                             | 9608  | 1.6            | 20.0                   |
| DFT Traffic Data 2019 | 99604         | CollegeRd_Rd_1                | 9608  | 1.6            | 19.8                   |
| DFT Traffic Data 2019 | 99604         | CollegeRd_JctN_San<br>df      | 9608  | 1.6            | 20.0                   |
| DFT Traffic Data 2019 | 99377         | EveshamRd_JctN_Cl<br>are      | 12401 | 4.7            | 20.0                   |
| DFT Traffic Data 2019 | 99377         | EveshamRd_Rd_1                | 12401 | 4.7            | 48.3                   |
| DFT Traffic Data 2019 | 99377         | EveshamRd_JctS_W<br>elli      | 12401 | 4.7            | 20.0                   |
| DFT Traffic Data 2019 | 77984         | Shurdgtn_Rd_2                 | 17386 | 2.0            | 48.3                   |
| DFT Traffic Data 2019 | 77984         | Shurdgtn_JctE_Moor<br>en      | 17386 | 2.0            | 20.0                   |
| DFT Traffic Data 2019 | 77984         | Shurdgtn_Rd_JctW_<br>A46      | 17386 | 2.0            | 20.0                   |
| DFT Traffic Data 2019 | 77984         | Shurdgtn_Rd_1                 | 17386 | 2.0            | 48.3                   |
| DFT Traffic Data 2019 | 77984         | Shurdgtn_JctW_Moor<br>en      | 17386 | 2.0            | 57.9                   |
| DFT Traffic Data 2019 | 77984         | Shurdgtn_Rd_3                 | 17386 | 2.0            | 33.9                   |
| DFT Traffic Data 2019 | 77983         | A40_LndRd_Rd_5                | 11370 | 2.1            | 64.4                   |
| DFT Traffic Data 2019 | 77983         | A40_LndRd_Rd_6_Xi<br>n        | 11370 | 2.1            | 57.9                   |
| DFT Traffic Data 2019 | 77983         | A40_JctW_Greenway<br>Ln       | 11370 | 2.1            | 20.0                   |
| DFT Traffic Data 2019 | 77983         | A40_JctE_Greenway<br>Ln       | 11370 | 2.1            | 20.0                   |
| DFT Traffic Data 2019 | 77983         | A40_LndRd_Rd_7                | 11370 | 2.1            | 64.4                   |
| DFT Traffic Data 2019 | 77983         | A40_LndRd_Rd_8                | 11370 | 2.1            | 35.5                   |
| DFT Traffic Data 2019 | 77983         | A40_LndRd_Rd_3_Xi<br>n        | 11370 | 2.1            | 20.0                   |
| DFT Traffic Data 2019 | 77983         | A40_LndRd_Rd_4                | 11370 | 2.1            | 48.3                   |
| DFT Traffic Data 2019 | 77983         | A40_JctE_A435/Hay<br>war      | 11370 | 2.1            | 20.0                   |
| DFT Traffic Data 2019 | 77983         | A40_LndRd_Rd_3                | 11370 | 2.1            | 48.3                   |
| DFT Traffic Data 2019 | 70126         | A46_Fairvw_JctW_Wi<br>nc      | 12310 | 2.5            | 17.4                   |
| DFT Traffic Data 2019 | 70126         | A46_Fairvw_JctE_Prt<br>I      | 12310 | 2.5            | 17.4                   |



| Source                | Traffic Point | Modelled Road Link       | AADT  | HG<br>V<br>(%) | Average<br>Speed (kph) |
|-----------------------|---------------|--------------------------|-------|----------------|------------------------|
| DFT Traffic Data 2019 | 70122         | NStreet_JctS_A4019       | 5410  | 3.6            | 20.0                   |
| DFT Traffic Data 2019 | 70122         | NStreet_JctM_AlbnSt      | 5410  | 3.6            | 20.0                   |
| DFT Traffic Data 2019 | 58258         | A40_6                    | 24356 | 3.6            | 64.4                   |
| DFT Traffic Data 2019 | 58258         | A40_7                    | 24356 | 3.6            | 64.4                   |
| DFT Traffic Data 2019 | 58258         | Glcster_Jct_Split        | 24356 | 3.6            | 57.9                   |
| DFT Traffic Data 2019 | 58258         | Glcster_2Jct_Split       | 24356 | 3.6            | 32.2                   |
| DFT Traffic Data 2019 | 58258         | A40_8                    | 24356 | 3.6            | 64.4                   |
| DFT Traffic Data 2019 | 58258         | A40_9_2Jct               | 24356 | 3.6            | 32.2                   |
| DFT Traffic Data 2019 | 5048          | AlbionSt_Rd_3_Xin        | 4871  | 3.6            | 48.3                   |
| DFT Traffic Data 2019 | 5048          | AlbionSt_Rd_1            | 4871  | 3.6            | 48.3                   |
| DFT Traffic Data 2019 | 5048          | AlbionSt_Rd_2            | 4871  | 3.6            | 48.3                   |
| DFT Traffic Data 2019 | 5048          | AlbionSt_Rd_4            | 4871  | 3.6            | 48.3                   |
| DFT Traffic Data 2019 | 5030          | A46_BathRd_Rd_1          | 14470 | 3.6            | 34.6                   |
| DFT Traffic Data 2019 | 48637         | A46_BathRd_Rd_2          | 14381 | 1.9            | 48.3                   |
| DFT Traffic Data 2019 | 48637         | A46_BathRd_JctE_B<br>ath | 14381 | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 48637         | A46_BathRd_JctW_B<br>ath | 14381 | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 48072         | A46_BathRd_Rd_4          | 10873 | 1.4            | 48.3                   |
| DFT Traffic Data 2019 | 48072         | A46_BathRd_JctN_Sf<br>Ik | 10873 | 1.4            | 20.0                   |
| DFT Traffic Data 2019 | 48071         | OldBathRd_JctS_San<br>df | 11292 | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 48071         | OldBathRd_Rd_4           | 11292 | 1.9            | 48.3                   |
| DFT Traffic Data 2019 | 48071         | ThirleRd_Rd_1            | 11292 | 1.9            | 26.5                   |
| DFT Traffic Data 2019 | 48071         | ThirleRd_JctE_SflkRd     | 11292 | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 48071         | OldBathRd_JctN_Thir      | 11292 | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 48071         | ThirleRd_JctW_OldB<br>at | 11292 | 1.9            | 20.0                   |
| DFT Traffic Data 2019 | 38657         | Promenade_Jct_A46        | 11465 | 6.2            | 20.0                   |
| DFT Traffic Data 2019 | 38657         | Promenade_Rd_1           | 11465 | 6.2            | 48.3                   |
| DFT Traffic Data 2019 | 38657         | MntPelWalk_Rd_2          | 11465 | 6.2            | 48.3                   |
| DFT Traffic Data 2019 | 38657         | MntPelWalk_JctN_La<br>nd | 11465 | 6.2            | 21.7                   |
| DFT Traffic Data 2019 | 38657         | Promenade_Rd_2           | 11465 | 6.2            | 48.3                   |
| DFT Traffic Data 2019 | 38657         | MntPelWalk_Rd_1          | 11465 | 6.2            | 48.3                   |
| DFT Traffic Data 2019 | 38656         | A46_Fairvw_JctE_Wi<br>nc | 12310 | 2.5            | 20.0                   |
| DFT Traffic Data 2019 | 38656         | A46_Fairvw_Rd_3          | 12310 | 2.5            | 48.3                   |
| DFT Traffic Data 2019 | 38656         | A46_Fairvw_JctW_Al<br>bS | 12310 | 2.5            | 20.0                   |
| DFT Traffic Data 2019 | 38656         | A46_Fairvw_Rd_1          | 12310 | 2.5            | 48.3                   |
| DFT Traffic Data 2019 | 38656         | A46_Fairvw_Rd_2          | 12310 | 2.5            | 48.3                   |
| DFT Traffic Data 2019 | 99605         | A16_Jct                  | 14029 | 2.7            | 20.0                   |
| DFT Traffic Data 2019 | 99605         | A46_AlbionSt_Rd_2        | 14029 | 2.7            | 48.3                   |
| DFT Traffic Data 2019 | 99605         | A46_Fairvw_JctE_Alb<br>S | 14029 | 2.7            | 20.0                   |
| DFT Traffic Data 2019 | 99605         | A46_AlbionSt_Rd_1        | 14029 | 2.7            | 48.3                   |
| DFT Traffic Data 2019 | 99605         | A46_AlbS_JctW_StJa<br>me | 14029 | 2.7            | 20.0                   |
| DFT Traffic Data 2019 | 28700         | A46_BathRd_Rd_3          | 6509  | 1.5            | 48.3                   |



| Source                                         | Traffic Point  | Modelled Road Link                           | AADT           | HG<br>V<br>(%) | Average<br>Speed (kph) |
|------------------------------------------------|----------------|----------------------------------------------|----------------|----------------|------------------------|
| DFT Traffic Data 2019                          | 26442          | A40_2Jct_1                                   | 12023          | 1.6            | 16.6                   |
| DFT Traffic Data 2019                          | 26442          | SflkRd_Rd_6                                  | 12023          | 1.6            | 48.3                   |
| DFT Traffic Data 2019                          | 26442          | SflkRd_Rd_5_Xin                              | 12023          | 1.6            | 20.0                   |
| DFT Traffic Data 2019                          | 26442          | A40_1                                        | 12023          | 1.6            | 48.3                   |
| DFT Traffic Data 2019                          | 26442          | A40_2                                        | 12023          | 1.6            | 48.3                   |
| DFT Traffic Data 2019                          | 18553          | ImpSq_Jct_2                                  | 10852          | 1.9            | 20.0                   |
| DFT Traffic Data 2019<br>DFT Traffic Data 2019 | 18553<br>18553 | ImpSq_Rd_2<br>ImpSq_JctW_A46                 | 10852<br>10852 | 1.9<br>1.9     | 48.3<br>20.0           |
| DFT Traffic Data 2019                          | 18333          | A4019_Swindon_Rd_<br>1                       | 14723          | 3.0            | 48.3                   |
| DFT Traffic Data 2019                          | 18275          | A4019_SwdnR_JctE_<br>StG                     | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_Swindon_Rd_<br>4                       | 14723          | 3.0            | 48.3                   |
| DFT Traffic Data 2019                          | 18275          | A46_Fairvw_JctW_Pr<br>tl                     | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_Swindon_Rd_<br>3                       | 14723          | 3.0            | 48.3                   |
| DFT Traffic Data 2019                          | 18275          | A4019_SwdnR_JctW<br>StG                      | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_StMar_Rd_5                             | 14723          | 3.0            | 48.3                   |
| DFT Traffic Data 2019                          | 18275          | A4019_StMar_JctW_<br>MoA                     | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_SwdnR_JctW<br>_DuS                     | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_SwdnR_JctE_<br>DuS                     | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_StMar_JctW_<br>NoP                     | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_StMar_JctE_<br>NoP                     | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_StMar_JctE_<br>MoA                     | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | A4019_StMar_Rd_6<br>A4019_Swindon_Jct_       | 14723          | 3.0            | 48.3                   |
| DFT Traffic Data 2019                          | 18275          | A4019_Swindon_Jct_<br>1<br>A4019_Swindon_Rd_ | 14723          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 18275          | 2                                            | 14723          | 3.0            | 48.3                   |
| DFT Traffic Data 2019                          | 17981          | A435_JctN_A40/B40<br>75                      | 14182          | 2.3            | 20.0                   |
| DFT Traffic Data 2019<br>DFT Traffic Data 2019 | 17981<br>17981 | A435_Rd_1<br>A435_Rd_2                       | 14182<br>14182 | 2.3<br>2.3     | 23.4<br>48.3           |
| DFT Traffic Data 2019                          | 17981          | A435_R0_2<br>A435_JctE_HewlettR<br>d         | 14182          | 2.3            | 48.3<br>20.0           |
| DFT Traffic Data 2019                          | 16411          | A40_LndRd_Rd_2                               | 17533          | 3.0            | 48.3                   |
| DFT Traffic Data 2019                          | 16411          | A40_JctS_A40/B4075                           | 17533          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 16411          | A40_JctN_A435/Hay<br>war                     | 17533          | 3.0            | 20.0                   |
| DFT Traffic Data 2019                          | 16411          | A40_LndRd_Rd_1                               | 17533          | 3.0            | 48.3                   |
| DFT Traffic Data 2019                          | 8570           | MntTerr_Rd_2_Xin                             | 11598          | 1.8            | 20.0                   |
| DFT Traffic Data 2019                          | 8570           | MntTerr_Rd_3                                 | 11598          | 1.8            | 24.6                   |
| DFT Traffic Data 2019                          | 8570           | MntTerr_JctE_RdbLa<br>ns                     | 11598          | 1.8            | 24.6                   |
| DFT Traffic Data 2019                          | 8570           | MntTerr_JctW_BathR<br>d                      | 11598          | 1.8            | 20.0                   |



| Source                   | Traffic Point | Modelled Road Link       | AADT  | HG<br>V<br>(%) | Average<br>Speed (kph) |
|--------------------------|---------------|--------------------------|-------|----------------|------------------------|
| DFT Traffic Data 2019    | 8570          | MntTerr_Rd_1             | 11598 | 1.8            | 48.3                   |
| DFT Traffic Data 2019    | 8569          | PrtIndSt_Rd_1            | 7892  | 7.0            | 23.6                   |
| DFT Traffic Data 2019    | 8569          | PrtInd_JctS_Clarence     | 7892  | 7.0            | 20.0                   |
| DFT Traffic Data 2019    | 8569          | PrtIndSt_JctN_A4019      | 7892  | 7.0            | 20.0                   |
| DFT Traffic Data 2019    | 38372         | OldBathRd_Rd_1           | 11915 | 1.8            | 20.4                   |
| DFT Traffic Data 2019    | 38372         | OldBathRd_Rd_2           | 11915 | 1.8            | 20.4                   |
| DFT Traffic Data 2019    | 38372         | OldBathRd_Rd_3           | 11915 | 1.8            | 48.3                   |
| DFT Traffic Data 2019    | 38372         | OldBathRd_JctN_San<br>df | 11915 | 1.8            | 20.0                   |
| DFT Traffic Data 2019    | 38372         | OldBathRd_JctN_CB<br>ath | 11915 | 1.8            | 20.0                   |
| DFT Traffic Data 2019    | 38372         | OldBathRd_JctS_CB<br>ath | 11915 | 1.8            | 20.0                   |
| DFT Traffic Data 2019    | 6436          | Lansdown_Rd              | 18384 | 3.3            | 27.5                   |
| DFT Traffic Data 2019    | 6436          | LndsRd_2Jct              | 18384 | 3.3            | 32.2                   |
| DFT Traffic Data 2019    | 6436          | LnsdwnRd_Jct_Rdbnt       | 18384 | 3.3            | 20.0                   |
| DFT Traffic Data 2019    | 6436          | LnsdwnRd_Rdbt            | 18384 | 3.3            | 20.0                   |
| DFT Traffic Data 2019    | 6436          | LnsdwnRd_JctE_Rdb<br>t   | 18384 | 3.3            | 57.9                   |
| DFT Traffic Data 2019    | 58259         | ClrParade_JctS_Clrn<br>c | 7921  | 4.3            | 20.0                   |
| DFT Traffic Data 2019    | 58259         | RoyalWell_JctS_Crec      | 7921  | 4.3            | 20.0                   |
| DFT Traffic Data 2019    | 58259         | RoyalWell_Rd_1           | 7921  | 4.3            | 48.3                   |
| DFT Traffic Data 2019    | 58259         | ClrParade_Rd_1           | 7921  | 4.3            | 48.3                   |
| DFT Traffic Data 2019    | 58259         | ClrParade_JctN_Crec<br>T | 7921  | 4.3            | 20.0                   |
| DFT Traffic Data 2019    | 48638         | AlbionSt_Rd_5            | 4871  | 6.4            | 48.3                   |
| DFT Traffic Data 2019    | 48638         | AlbionSt_JctW_StJm<br>es | 4871  | 6.4            | 20.0                   |
| DFT Traffic Data 2019    | 28699         | A4013_MJct               | 26222 | 2.3            | 41.0                   |
| DFT Traffic Data 2019    | 28699         | A4013                    | 26222 | 2.3            | 41.0                   |
| DFT Traffic Data 2019    | 18553         | ImpSq_Rd_1               | 12963 | 1.9            | 48.3                   |
| DFT Traffic Data 2019    | 18553         | ImpSq_Jct_1              | 12963 | 1.9            | 20.0                   |
| DFT Traffic Data 2019    | 18553         | ImpSq_JctE_A46           | 12963 | 1.9            | 20.0                   |
| DFT Traffic Data 2019    | 8290          | ClarenceRd_JctW_A<br>46  | 8787  | 2.9            | 20.9                   |
| DFT Traffic Data 2019    | 28221         | Sndfrd_JctE_BathRd       | 10090 | 2.0            | 20.0                   |
| DFT Traffic Data 2019    | 28221         | Sndfrd_JctW_OldBat<br>hR | 10090 | 2.0            | 20.0                   |
| DFT Traffic Data 2019    | 28221         | SndfrdRd_Rd              | 10090 | 2.0            | 27.2                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_2_Xin        | 10654 | 5.8            | 20.0                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_3            | 10654 | 5.8            | 48.3                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_5            | 10654 | 5.8            | 48.3                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_6            | 10654 | 5.8            | 48.3                   |
| County Traffic Data 2019 | 5032          | Prestbry_NJct_Rdbt       | 10654 | 5.8            | 20.0                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_9            | 10654 | 5.8            | 48.3                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_4            | 10654 | 5.8            | 48.3                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_7            | 10654 | 5.8            | 48.3                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_8            | 10654 | 5.8            | 48.3                   |
| County Traffic Data 2019 | 5032          | Prestbry_Jct_A46         | 10654 | 5.8            | 20.0                   |
| County Traffic Data 2019 | 5032          | Prestbry_Rd_1            | 10654 | 5.8            | 48.3                   |
| County Traffic Data 2019 | 5032          | Prestbry_Jct_Rdbt        | 10654 | 5.8            | 20.0                   |



| Source                                                      | Traffic Point         | Modelled Road Link | AADT  | HG<br>V<br>(%) | Average<br>Speed (kph) |
|-------------------------------------------------------------|-----------------------|--------------------|-------|----------------|------------------------|
| County Traffic Data 2019                                    | 5032                  | Prestbry_Rdbt      | 10654 | 5.8            | 20.0                   |
| County Traffic Data 2019                                    | 5021                  | Poole_Way_Jct      | 14008 | 1.4            | 20.0                   |
| County Traffic Data 2019                                    | 5020                  | A4019_High_St_1    | 24066 | 2.7            | 48.3                   |
| County Traffic Data 2019                                    | 5021                  | A4019_Poole_Way_1  | 14008 | 1.4            | 48.3                   |
| County Traffic Data 2019                                    | 5020                  | A4019_Jct          | 24066 | 2.7            | 20.0                   |
| County Traffic Data 2019                                    | 5021                  | A4019_Poole_Way_2  | 20822 | 1.7            | 48.3                   |
| County Traffic Data 2019                                    | 5069                  | Winchombe_Jct      | 3127  | 1.7            | 25.3                   |
| County Traffic Data 2019                                    | 5047                  | RodneyRd           | 7408  | 1.8            | 48.3                   |
| County Traffic Data 2019                                    | 5047                  | RodneyRd_Jct       | 7408  | 1.8            | 20.0                   |
| County Traffic Data 2019                                    | 99185980_9<br>9185981 | RodneyRd_2         | 7880  | 3.1            | 29.9                   |
| County Traffic Data 2019                                    | 99185980_9<br>9185981 | RodneyRd_1         | 7880  | 3.1            | 29.9                   |
| County Traffic Data 2019                                    | 5037                  | A40_MJct_Split2_1  | 44059 | 2.5            | 50.7                   |
| County Traffic Data 2019                                    | 5036                  | A4013_1_Xin        | 26222 | 1.8            | 41.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 70                    | Leckhampton_Rd_Jct | 10634 | 2.3            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 70                    | Leckhampton_Rd     | 10634 | 2.3            | 26.4                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 70                    | Leckhampton_Rd_1   | 10634 | 2.3            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Jct_2        | 13648 | 2.5            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | Glcs_Rd            | 13648 | 2.5            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Jct_3        | 13648 | 2.5            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Glcster_Rd_1 | 13648 | 2.5            | 21.2                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Glcster_Rd_2 | 13648 | 2.5            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_1_2Jct       | 13648 | 2.5            | 24.1                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Glcster_Rd_5 | 13648 | 2.5            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Glcster_Rd_4 | 13648 | 2.5            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Glcster_Rd_3 | 13648 | 2.5            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_2Jct         | 13648 | 2.5            | 24.1                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Glcster_Rd_6 | 13648 | 2.5            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Jct          | 13648 | 2.5            | 20.0                   |
| County Traffic Data 2017 (factored to<br>2019 using TEMPro) | 118                   | B4633_Jct_1        | 13648 | 2.5            | 20.0                   |
| County Traffic Data 2017 (factored to<br>2019 using TEMPro) | 118                   | Glcstr_Rd_Jct      | 13648 | 2.5            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 118                   | B4633_Jct_4        | 13648 | 2.5            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 78                    | Hewlett_Rd_Rdbt    | 5588  | 1.7            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 78                    | Hewlett_Rd_Jct_2   | 5588  | 1.7            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)    | 78                    | Hewlett_Rd_Jct_1   | 5588  | 1.7            | 20.0                   |



| Source                                                                  | Traffic Point | Modelled Road Link | AADT  | HG<br>V<br>(%) | Average<br>Speed (kph) |
|-------------------------------------------------------------------------|---------------|--------------------|-------|----------------|------------------------|
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 78            | Hewlett_Rd         | 5588  | 1.7            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 78            | Hewlett_Rd_1       | 5588  | 1.7            | 27.2                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 137           | Hewlett_Rd_Jct     | 5310  | 1.7            | 16.1                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5054          | WellRd_Jct_2       | 894   | 1.8            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5053          | WellRd             | 997   | 1.8            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5053          | WellRd_Jct_1       | 997   | 1.8            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5053          | WellRd_Jct         | 997   | 1.8            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5034          | RoyalWell_Rd_2     | 14126 | 1.8            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5034          | StGeorge_Jct       | 14126 | 1.8            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5060          | ClarenceSt_Rd_1    | 7921  | 4.7            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5060          | Clrence_JctE_A46   | 7921  | 4.7            | 20.0                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5060          | NorthSt_Rd_1       | 7921  | 4.7            | 48.3                   |
| County Traffic Data 2017 (factored to 2019 using TEMPro)                | 5060          | NorthSt_Rd_2       | 7921  | 4.7            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd_5        | 8971  | 2.9            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd_1        | 8971  | 2.9            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd_2        | 8971  | 2.9            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd_Jct      | 8971  | 2.9            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd          | 8971  | 2.9            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd_4        | 8971  | 2.9            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd_Jct_2    | 8971  | 2.9            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd_3        | 8971  | 2.9            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5068          | StPaulsRd_Jct_1    | 8971  | 2.9            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5062          | PEW_9_Split_Jct    | 17034 | 2.1            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5062          | PEW_8_Jct          | 17034 | 2.1            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5062          | PEW_2              | 17034 | 2.1            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5062          | PEW_3_Jct          | 17034 | 2.1            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5062          | PEW_Jct            | 17034 | 2.1            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5062          | PEW_1              | 17034 | 2.1            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017 | 5062          | PEW_6              | 17034 | 2.1            | 48.3                   |



| Source                                                                     | Traffic Point                  | Modelled Road Link       | AADT  | HG<br>V<br>(%) | Average<br>Speed (kph) |
|----------------------------------------------------------------------------|--------------------------------|--------------------------|-------|----------------|------------------------|
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5062                           | PEW_7_Jct                | 17034 | 2.1            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5062                           | PEW_4_Jct                | 17034 | 2.1            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5062                           | PEW_5                    | 17034 | 2.1            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5062                           | PEW_Split_2Jct           | 17034 | 2.1            | 24.1                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5050                           | WnchmbeSt_JctS_A4<br>6   | 1717  | 4.1            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5050                           | WnchmbeSt_Rd_4           | 1717  | 4.1            | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5050                           | WnchmbeSt_JctN_Al<br>bio | 1717  | 4.1            | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5041                           | Kingsditch_Rd_Jct        | 22405 | 36.4           | 20.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5041                           | Kingsditch_Rd            | 22405 | 36.4           | 48.3                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5041                           | Kingsditch_MJct          | 22405 | 36.4           | 10.0                   |
| County Traffic Count Data 2019,<br>County Vehicle Composition Data 2017    | 5041                           | Kingsditch_Rd_1          | 22405 | 36.4           | 48.3                   |
| County Traffic Count Data 2019, DFT<br>Vehicle Composition Data 2019       | 5037_77985                     | A40_Glcster_Rd           | 44059 | 2.5            | 50.7                   |
| County Traffic Count Data 2019, DFT<br>Vehicle Composition Data 2019       | 5037 _77985                    | A40_MJct_Split2          | 44059 | 2.5            | 50.7                   |
| County Traffic Count Data 2019, DFT<br>Vehicle Composition Data 2019       | 5037E_7798<br>5                | GloucesterRd_J3          | 21229 | 2.5            | 53.6                   |
| County Traffic Count Data 2019, DFT<br>Vehicle Composition Data 2019       | 5037W_779<br>85                | GloucesterRd_J4          | 22830 | 2.5            | 47.8                   |
| County Traffic Count Data 2019, DFT<br>Vehicle Composition Data 2019       | 5037_77985                     | ArleCrt_Rdbt             | 44059 | 2.5            | 20.0                   |
| Calculated from surrounding links                                          | 6436_58258<br>_26442           | A_40_2Rdbt               | 18254 | 1.4            | 20.0                   |
| Calculated from surrounding links                                          | 6436_58258<br>_26442           | A40_10_2Jct              | 18254 | 1.4            | 20.0                   |
| Calculated from surrounding links                                          | 6436_58258<br>26442            | A40_12                   | 18254 | 1.4            | 64.4                   |
| Calculated from surrounding links                                          | 6436_58258<br>26442            | A40_2Jct                 | 18254 | 1.4            | 20.0                   |
| Calculated from surrounding links                                          | 6436_58258<br>26442            | A40_2Jct_2               | 18254 | 1.4            | 20.0                   |
| Calculated from surrounding links                                          | 6436_58258<br>26442            | A40_Jct                  | 18254 | 1.4            | 20.0                   |
| Calculated from surrounding links                                          | 6436_58258<br>_26442           | A40_Jct_1                | 18254 | 1.4            | 20.0                   |
| Calculated from surrounding links                                          | 5069_99185<br>980_991859<br>81 | High_St_Jct_2            | 3127  | 1.7            | 20.0                   |
| Calculated from surrounding links                                          | 6436_58258<br>_26442           | Lansdown_Rd_A40_<br>1    | 18254 | 1.4            | 20.0                   |
| Calculated from surrounding links                                          | 6436_58258<br>_26442           | Lansdown_Rd_A40_<br>2    | 18254 | 1.4            | 20.0                   |
| Calculated from surrounding links                                          | 6436_38657<br>_8570            | <br>MntPelWalk_Rdbt      | 14991 | 1.2            | 20.0                   |
| Calculated from surrounding links                                          | 5019_5041_<br>5036_5020        | Tew_Rd_MRdbt             | 26125 | 1.7            | 20.0                   |
| Calculated from surrounding links,<br>County Vehicle Composition Data 2017 | 5036_5062                      | A4013_Rdbt               | 21934 | 2.1            | 20.0                   |



| Source                                                                     | Traffic Point       | Modelled Road Link | AADT  | HG<br>V<br>(%) | Average<br>Speed (kph) |
|----------------------------------------------------------------------------|---------------------|--------------------|-------|----------------|------------------------|
| Calculated from surrounding links,<br>County Vehicle Composition Data 2017 | 77984_70_5<br>025   | A46_BathRd_Rdbt    | 14862 | 1.9            | 20.0                   |
| Calculated from surrounding links,<br>County Vehicle Composition Data 2017 | 5037_5062_<br>58258 | PEW_2Rdbt_         | 41390 | 3.0            | 20.0                   |

#### Notes

Traffic flows and vehicle class compositions were taken from the Gloucestershire County Council roads traffic database and the DfT traffic count point database

Traffic speeds were modelled at either the relevant speed limit for each road or where available monitored vehicle speeds

Where appropriate, vehicle speeds have been reduced to simulate queues at junctions, traffic lights and other locations where queues or slower traffic are known to be an issue – in accordance with LAQM  $TG(16)^{1}$ 



## **Appendix D – Receptor Locations and Corresponding Modelled Predictions**

Table D.1 – Predicted 2019 Annual Mean Concentrations of  $NO_2$ ,  $PM_{10}$  and  $PM_{2.5}$  at Discrete Receptor Locations

| Receptor ID | Verification | x      | Y      | Height | Closest<br>address/post |                 | Annual entration |                   |
|-------------|--------------|--------|--------|--------|-------------------------|-----------------|------------------|-------------------|
| Receptor ib | Zone         | ^      | •      | neight | code                    | NO <sub>2</sub> | <b>PM</b> 10     | PM <sub>2.5</sub> |
| 1           | 2            | 391956 | 222037 | 1.5    | GL51 6BW                | 33.7            | 17.7             | 11.7              |
| 2           | 2            | 391862 | 222021 | 1.5    | GL51 6BP                | 29.6            | 17.4             | 11.4              |
| 3           | 2            | 392013 | 222033 | 1.5    | GL51 6BN                | 28.0            | 17.4             | 11.5              |
| 4           | 2            | 392006 | 222119 | 1.5    | GL51 7TY                | 51.9            | 22.1             | 14.3              |
| 5           | 2            | 391990 | 222184 | 1.5    | GL51 7TX                | 39.4            | 18.6             | 12.2              |
| 6           | 2            | 392064 | 222078 | 1.5    | GL51 7TT                | 32.8            | 18.8             | 12.3              |
| 7           | 2            | 391905 | 222033 | 1.5    | GL51 6BP                | 31.6            | 17.6             | 11.6              |
| 8           | 2            | 391777 | 221979 | 1.5    | GL51 6BP                | 29.0            | 17.6             | 11.5              |
| 9           | 2            | 392123 | 222065 | 1.5    | GL51 7TW                | 28.3            | 17.9             | 11.8              |
| 10          | 2            | 391994 | 222245 | 1.5    | GL51 7ST                | 30.1            | 16.9             | 11.2              |
| 11          | 2            | 392027 | 222160 | 1.5    | GL51 7TY                | 31.4            | 17.8             | 11.8              |
| 12          | 2            | 392053 | 222120 | 1.5    | GL51 7TS                | 28.3            | 17.4             | 11.5              |
| 13          | 2            | 391887 | 222101 | 0.0    | GL51 0FS                | 47.4            | 21.3             | 13.7              |
| 14          | 2            | 391851 | 222092 | 0.0    | GL51 0FQ                | 35.7            | 18.7             | 12.2              |
| 15          | 2            | 391922 | 222156 | 0.0    | GL51 0FW                | 39.7            | 18.8             | 12.3              |
| 16          | 2            | 391932 | 222189 | 0.0    | GL51 0FP                | 33.2            | 17.5             | 11.5              |
| 17          | 2            | 391910 | 222136 | 0.0    | GL51 0FT                | 42.7            | 19.6             | 12.7              |
| 18          | 2            | 391891 | 222162 | 0.0    | GL51 0FT                | 28.2            | 16.8             | 11.1              |
| 19          | 2            | 391999 | 222324 | 1.5    | GL51 7SW                | 27.4            | 16.8             | 11.1              |
| 20          | 2            | 392118 | 222637 | 1.5    | GL51 7SG                | 26.4            | 16.9             | 11.3              |
| 21          | 2            | 392126 | 222688 | 4.0    | GL51 7SQ                | 31.8            | 17.8             | 11.8              |
| 22          | 2            | 392140 | 222696 | 4.0    | GL51 7SF                | 33.6            | 18.0             | 11.9              |
| 23          | 2            | 392201 | 222734 | 1.5    | GL51 7RS                | 36.7            | 18.5             | 12.2              |
| 24          | 2            | 392206 | 222770 | 1.5    | GL51 7RS                | 36.5            | 18.5             | 12.2              |
| 25          | 2            | 392106 | 222783 | 1.5    | GL51 0GY                | 32.8            | 17.8             | 11.8              |
| 26          | 2            | 392217 | 222852 | 1.5    | GL51 7NZ                | 35.1            | 19.0             | 12.5              |
| 27          | 2            | 392241 | 222986 | 1.5    | GL51 7PX                | 30.8            | 18.2             | 12.0              |
| 28          | 2            | 392260 | 223050 | 1.5    | GL51 7PT                | 30.6            | 18.2             | 12.1              |
| 29          | 2            | 392297 | 223125 | 1.5    | GL51 7NJ                | 32.6            | 18.7             | 12.3              |
| 30          | 2            | 392443 | 223306 | 1.5    | GL51 7LT                | 28.9            | 17.8             | 11.9              |
| 31          | 2            | 392471 | 223340 | 1.5    | GL51 7LR                | 30.3            | 18.2             | 12.0              |
| 32          | 2            | 392518 | 223418 | 1.5    | GL51 0BL                | 30.9            | 18.3             | 12.1              |
| 33          | 2            | 392549 | 223394 | 1.5    | GL51 7PN                | 28.9            | 17.9             | 11.9              |
| 34          | 2            | 392895 | 223576 | 1.5    | GL51 7PF                | 39.7            | 20.4             | 13.3              |
| 35          | 2            | 392995 | 223628 | 1.5    | GL51 7PE                | 30.5            | 18.1             | 12.0              |
| 36          | 2            | 393052 | 223608 | 1.5    | , GL51 7NY              | 26.8            | 17.0             | 11.4              |
| 37          | 2            | 393127 | 223760 | 1.5    | GL51 0UW                | 28.3            | 17.3             | 11.5              |
| 38          | 2            | 393186 | 223833 | 1.5    | GL51 0UW                | 32.0            | 18.0             | 11.9              |
| 39          | 2            | 393125 | 224021 | 1.5    | GL51 0BZ                | 28.9            | 17.3             | 11.2              |
| 40          | 2            | 393103 | 224039 | 1.5    | GL51 0BZ                | 28.1            | 17.2             | 11.1              |
| 41          | 2            | 393057 | 224059 | 1.5    | GL51 0BZ                | 23.8            | 16.2             | 10.5              |
| 42          | 2            | 393415 | 223732 | 1.5    | GL51 9DZ                | 27.4            | 17.3             | 11.5              |
| 43          | 2            | 393487 | 223659 | 1.5    | GL51 9EH                | 26.7            | 17.2             | 11.5              |
| 44          | 2            | 393740 | 223507 | 1.5    | GL51 9DP                | 29.3            | 17.9             | 11.9              |
| 45          | 2            | 393793 | 223471 | 1.5    | GL51 9DN                | 28.7            | 17.7             | 11.8              |
| 46          | 2            | 393909 | 223378 | 1.5    | GL51 9BN                | 28.4            | 17.7             | 11.8              |
| 47          | 2            | 394048 | 223227 | 1.5    | GL51 9AR                | 29.3            | 17.8             | 11.9              |



| Receptor ID | Verification | x      | Y      | Height | Closest<br>address/post |                 | 2019 Annual<br>Concentration |               |
|-------------|--------------|--------|--------|--------|-------------------------|-----------------|------------------------------|---------------|
|             | Zone         |        | -      |        | code                    | NO <sub>2</sub> | <b>PM</b> 10                 | <b>PM</b> 2.5 |
| 48          | 2            | 393989 | 223296 | 1.5    | GL51 9AS                | 29.6            | 18.0                         | 11.9          |
| 49          | 2            | 394109 | 223171 | 1.5    | GL51 9HR                | 29.1            | 17.6                         | 11.8          |
| 50          | 1            | 394259 | 223038 | 1.5    | GL51 9HA                | 39.4            | 19.2                         | 12.7          |
| 51          | 1            | 394248 | 223050 | 1.5    | GL51 9HD                | 39.1            | 19.2                         | 12.7          |
| 52          | 1            | 394281 | 223013 | 1.5    | GL51 9ER                | 35.7            | 18.9                         | 12.5          |
| 53          | 1            | 394233 | 223001 | 3.5    | GL51 8DW                | 35.1            | 18.5                         | 12.3          |
| 54          | 1            | 394205 | 222989 | 1.5    | GL51 8PQ                | 36.1            | 18.5                         | 12.2          |
| 55          | 1            | 394250 | 223000 | 3.5    | GL51 8DW                | 40.6            | 19.6                         | 12.9          |
| 56          | 1            | 394271 | 222984 | 3.5    | GL51 9ER                | 41.9            | 20.1                         | 13.1          |
| 57          | 1            | 394307 | 222979 | 1.5    | GL50 3HZ                | 46.8            | 21.5                         | 13.9          |
| 58          | 1            | 394341 | 222954 | 1.5    | GL50 3HX                | 47.0            | 21.4                         | 13.8          |
| 59          | 1            | 394314 | 222951 | 3.5    | GL50 3JA                | 39.6            | 19.7                         | 12.8          |
| 60          | 1            | 394360 | 222917 | 1.5    | GL50 3JA                | 56.7            | 22.1                         | 14.3          |
| 61          | 1            | 394380 | 222929 | 1.5    | GL50 3HU                | 51.1            | 20.9                         | 13.7          |
| 62          | 1            | 394384 | 222898 | 1.5    | GL50 3NZ                | 36.1            | 18.1                         | 12.0          |
| 63          | 1            | 394497 | 222986 | 1.5    | GL50 4BE                | 31.1            | 17.8                         | 11.7          |
| 64          | 1            | 394609 | 222942 | 1.5    | GL50 4AS                | 34.6            | 18.6                         | 12.2          |
| 65          | 1            | 394519 | 222978 | 1.5    | GL50 4BD                | 27.3            | 17.0                         | 11.3          |
| 66          | 1            | 394670 | 222934 | 1.5    | GL50 4AH                | 32.9            | 18.3                         | 12.0          |
| 67          | 1            | 394691 | 222931 | 1.5    | GL50 4AH                | 30.2            | 17.7                         | 11.7          |
| 68          | 1            | 394727 | 222916 | 1.5    | GL50 4AH                | 32.5            | 18.1                         | 11.9          |
| 69          | 1            | 394684 | 222901 | 1.5    | GL50 4AH                | 30.9            | 17.8                         | 11.7          |
| 70          | 1            | 394665 | 222914 | 1.5    | GL50 4AS                | 40.7            | 20.2                         | 13.1          |
| 71          | 1            | 394745 | 222886 | 1.5    | GL50 4AL                | 44.4            | 19.7                         | 12.9          |
| 72          | 1            | 394763 | 222879 | 1.5    | GL50 4AL                | 44.7            | 19.8                         | 13.0          |
| 73          | 1            | 394788 | 222866 | 1.5    | GL50 4AL                | 34.3            | 18.4                         | 12.1          |
| 74          | 1            | 394823 | 222852 | 1.5    | GL50 4AL                | 39.9            | 18.9                         | 12.4          |
| 75          | 1            | 394835 | 222868 | 4.0    | GL50 4FF                | 34.2            | 17.8                         | 11.8          |
| 76          | 2            | 394973 | 222739 | 1.5    | GL50 4FB                | 32.8            | 18.1                         | 11.9          |
| 77          | 2            | 394994 | 222723 | 1.5    | GL50 4DZ                | 32.4            | 18.0                         | 11.9          |
| 78          | 2            | 395033 | 222681 | 1.5    | GL50 4FH                | 35.9            | 18.5                         | 12.2          |
| 79          | 2            | 395116 | 222668 | 3.5    | GL52 2NB                | 35.8            | 18.3                         | 12.1          |
| 80          | 2            | 395101 | 222643 | 3.5    | GL52 2NB                | 30.6            | 17.5                         | 11.6          |
| 81          | 2            | 395204 | 222614 | 1.5    | GL52 2NY                | 35.5            | 18.4                         | 12.2          |
| 82          | 2            | 395231 | 222606 | 1.5    | GL52 2NY                | 32.8            | 18.4                         | 12.1          |
| 83          | 2            | 395213 | 222640 | 1.5    | GL52 2NN                | 37.7            | 18.6                         | 12.3          |
| 84          | 2            | 395260 | 222588 | 1.5    | GL52 2AT                | 29.1            | 17.8                         | 11.8          |
| 85          | 2            | 395252 | 222625 | 1.5    | GL52 2AT                | 28.7            | 17.6                         | 11.7          |
| 86          | 2            | 395311 | 222590 | 1.5    | GL52 2JL                | 26.0            | 17.2                         | 11.4          |
| 87          | 2            | 395280 | 222567 | 1.5    | GL52 2AD                | 25.2            | 17.0                         | 11.3          |
| 88          | 2            | 395284 | 222575 | 3.5    | GL52 2AD                | 27.1            | 17.5                         | 11.6          |
| 89          | 2            | 395396 | 222527 | 1.5    | GL52 2EH                | 25.5            | 17.1                         | 11.4          |
| 90          | 2            | 395360 | 222389 | 1.5    | GL52 2LF                | 28.2            | 17.5                         | 11.6          |
| 91          | 2            | 395413 | 222477 | 1.5    | GL52 2EX                | 26.2            | 17.3                         | 11.5          |
| 92          | 2            | 395352 | 222332 | 1.5    | GL52 2LE                | 30.8            | 17.7                         | 11.7          |
| 93          | 2            | 395026 | 222573 | 3.5    | GL52 2LH                | 24.3            | 16.8                         | 11.2          |
| 94          | 2            | 395072 | 222561 | 3.5    | GL52 2LP                | 24.0            | 16.7                         | 11.2          |
| 95          | 2            | 395127 | 222521 | 3.5    | GL52 2LP                | 25.0            | 16.9                         | 11.3          |
| 96          | 2            | 395146 | 222509 | 3.5    | GL52 2RQ                | 24.6            | 16.8                         | 11.2          |
| 97          | 2            | 395178 | 222487 | 3.5    | GL52 2RQ                | 23.3            | 16.6                         | 11.1          |
| 98          | 2            | 395236 | 222449 | 1.5    | GL52 2RW                | 24.1            | 16.8                         | 11.2          |
| 99          | 2            | 395322 | 222292 | 1.5    | GL52 2UG                | 27.4            | 17.1                         | 11.4          |



| Receptor ID | Verification | x                | Y                | Y Height Closest Concentration ( |                      |                 |              |               |
|-------------|--------------|------------------|------------------|----------------------------------|----------------------|-----------------|--------------|---------------|
|             | Zone         |                  |                  |                                  | code                 | NO <sub>2</sub> | <b>PM</b> 10 | <b>PM</b> 2.5 |
| 100         | 2            | 395385           | 222232           | 1.5                              | GL52 2SW             | 33.5            | 18.8         | 12.4          |
| 101         | 2            | 395398           | 222240           | 1.5                              | GL52 2SS             | 38.8            | 20.1         | 13.1          |
| 102         | 2            | 395415           | 222228           | 1.5                              | GL52 2SU             | 33.5            | 18.8         | 12.3          |
| 103         | 2            | 395416           | 222180           | 1.5                              | GL52 2SY             | 32.4            | 18.6         | 12.2          |
| 104         | 2            | 395407           | 222154           | 1.5                              | GL52 2SY             | 30.1            | 18.1         | 11.9          |
| 105         | 2            | 395353           | 222127           | 1.5                              | GL52 6GA             | 30.7            | 18.1         | 12.0          |
| 106         | 2            | 395343           | 222072           | 1.5                              | GL52 6GA             | 39.9            | 19.6         | 12.9          |
| 107         | 2            | 395328           | 222080           | 1.5                              | GL52 6DB             | 40.8            | 19.7         | 12.9          |
| 108         | 2            | 395290           | 222028           | 1.5                              | GL50 1DZ             | 33.4            | 18.4         | 12.2          |
| 109         | 2            | 395267           | 222053           | 1.5                              | GL50 1DZ             | 31.6            | 18.1         | 12.0          |
| 110         | 2            | 395252           | 222069           | 1.5                              | GL50 1EE             | 30.5            | 17.9         | 11.9          |
| 111         | 2            | 395268           | 222086           | 1.5                              | GL52 6DA             | 35.1            | 18.9         | 12.4          |
| 112         | 2            | 395196           | 222149           | 3.5                              | GL50 1EE             | 32.9            | 18.4         | 12.2          |
| 113         | 2            | 395184           | 222161           | 3.5                              | GL50 1EE             | 32.7            | 18.4         | 12.1          |
| 114         | 2            | 395187           | 222183           | 4.0                              | GL50 1DU             | 30.2            | 17.9         | 11.8          |
| 115         | 2            | 395175           | 222170           | 3.5                              | GL50 1EE             | 35.3            | 18.9         | 12.4          |
| 116         | 2            | 395152           | 222150           | 3.5                              | GL53 7HA             | 32.2            | 18.0         | 12.0          |
| 117         | 2            | 395078           | 222109           | 1.5                              | GL53 7HG             | 32.7            | 18.6         | 12.3          |
| 118         | 2            | 395052           | 222086           | 1.5                              | GL53 7HG             | 30.4            | 18.2         | 12.0          |
| 119         | 2            | 395035           | 222036           | 1.5                              | GL53 7HW             | 31.3            | 18.4         | 12.1          |
| 120         | 2            | 395021           | 222049           | 0.0                              | GL53 7HG             | 34.8            | 19.2         | 12.6          |
| 121         | 2            | 395018           | 222016           | 1.5                              | GL53 7HJ             | 30.4            | 18.2         | 12.0          |
| 122         | 2            | 395000           | 221994           | 0.0                              | GL53 7HJ             | 29.3            | 17.3         | 11.5          |
| 123         | 2            | 394909           | 222010           | 1.5                              | GL50 1XP             | 25.5            | 16.5         | 11.0          |
| 124         | 2            | 394557           | 221997           | 4.0                              | GL50 1NN             | 26.3            | 16.6         | 11.1          |
| 125         | 2            | 394544           | 221981           | 4.0                              | GL50 1SA             | 26.0            | 16.5         | 11.1          |
| 126         | 2            | 394438           | 221748           | 0.0                              | GL50 1US             | 31.0            | 17.1         | 11.4          |
| 127         | 2            | 394470           | 221731           | 0.0                              | GL50 1UX             | 28.5            | 16.7         | 11.2          |
| 128         | 2            | 394496           | 221718           | 0.0                              | GL50 1UX             | 28.2            | 16.7         | 11.2          |
| 129         | 2            | 394614           | 221673           | 0.0                              | GL50 2XH             | 28.0            | 16.6         | 11.1          |
| 130         | 2            | 394595           | 221677           | 0.0                              | GL50 2XL             | 26.9            | 16.5         | 11.0          |
| 131         | 2            | 394702           | 221314           | 1.5                              | GL53 7LS             | 26.1            | 16.7         | 11.2          |
| 132         | 2            | 394614           | 221161           | 1.5                              | GL53 7LY             | 26.4            | 16.8         | 11.2          |
| 133         | 2            | 394588           | 221111           | 1.5                              | GL53 7LZ             | 27.5            | 16.9         | 11.3          |
| 134         | 2            | 394577           | 221075           | 1.5                              | GL53 7ND             | 38.7            | 18.6         | 12.3          |
| 135         | 2            | 394569           | 221063           | 0.0                              | GL53 7NA             | 34.2            | 17.7         | 11.8          |
| 136         | 2            | 394563           | 221045           | 0.0                              | GL53 7NA             | 35.1            | 17.9         | 11.9          |
| 137         | 2            | 394542           | 221004           | 3.5                              | GL53 0JB             | 38.9            | 18.5         | 12.3          |
| 138         | 2            | 394536           | 220998           | 1.5                              | GL53 0JB             | 38.0            | 18.5         | 12.3          |
| 139         | 2            | 394500           | 220958           | 1.5                              | GL53 0JA             | 40.7            | 20.5         | 13.4          |
| 140         | 2            | 394481           | 220947           | 1.5                              | GL53 0JA             | 31.5            | 18.2         | 12.1          |
| 141         | 2            | 394440           | 220913           | 1.5                              | GL50 2DP             | 30.5            | 18.0         | 12.0          |
| 142<br>143  | 2            | 394888<br>394926 | 221370<br>221349 | 1.5<br>1.5                       | GL53 7AA<br>GL53 7AA | 27.8<br>28.4    | 16.7         | 11.2<br>11.3  |
| 143         | 2            | 394926           | 221349           | 1.5                              | GL53 7AA<br>GL53 7JT | 28.4            | 16.8<br>16.7 | 11.3          |
| 144         | 2            | 394966           | 221934           | 0.0                              | GL53 7J1<br>GL53 7HX | 20.1            | 16.7         | 11.2          |
| 145         | 2            | 395154           | 221832           | 0.0                              | GL53 7HX             | 27.5            | 16.5         | 11.2          |
| 140         | 2            | 395365           | 221810           | 0.0                              | GL52 6DE             | 38.6            | 19.1         | 12.6          |
| 147         | 2            | 395385           | 222007           | 0.0                              | GL52 6DF             | 32.4            | 19.1         | 12.0          |
| 140         | 2            | 395365           | 221995           | 0.0                              | GL52 6DF             | 31.9            | 17.4         | 11.5          |
| 149         | 2            | 395420           | 221969           | 1.5                              | GL52 6DF             | 30.6            | 17.3         | 11.5          |
| 150         | 2            | 395679           | 221711           | 0.0                              | GL52 6DF             | 37.8            | 17.0         | 12.1          |



| Receptor ID | Verification | x      | Y      | Height | Closest<br>address/post |                 | 2019 Annual<br>Concentration |               |  |
|-------------|--------------|--------|--------|--------|-------------------------|-----------------|------------------------------|---------------|--|
|             | Zone         |        |        |        | code                    | NO <sub>2</sub> | <b>PM</b> 10                 | <b>PM</b> 2.5 |  |
| 152         | 2            | 395661 | 221670 | 1.5    | GL52 6DF                | 37.9            | 18.3                         | 12.1          |  |
| 153         | 2            | 395632 | 221689 | 1.5    | GL52 6EW                | 30.7            | 17.0                         | 11.4          |  |
| 154         | 2            | 395604 | 221656 | 0.0    | GL52 6EW                | 28.4            | 16.6                         | 11.1          |  |
| 155         | 2            | 395491 | 221471 | 1.5    | GL52 6EW                | 27.9            | 16.6                         | 11.1          |  |
| 156         | 2            | 395539 | 221509 | 1.0    | GL52 6EW                | 32.1            | 17.3                         | 11.5          |  |
| 157         | 2            | 395679 | 221645 | 0.0    | GL52 6EW                | 33.2            | 17.5                         | 11.7          |  |
| 158         | 2            | 395690 | 221629 | 0.0    | GL52 6EH                | 29.9            | 17.2                         | 11.5          |  |
| 159         | 2            | 395706 | 221612 | 0.0    | GL52 6EH                | 30.5            | 17.6                         | 11.7          |  |
| 160         | 2            | 395745 | 221555 | 0.0    | GL52 6EH                | 26.2            | 16.8                         | 11.2          |  |
| 161         | 2            | 395830 | 221496 | 1.5    | GL52 6EH                | 29.5            | 17.6                         | 11.7          |  |
| 162         | 2            | 395865 | 221446 | 0.0    | GL52 6EH                | 37.9            | 19.7                         | 12.9          |  |
| 163         | 2            | 395934 | 221371 | 1.5    | GL52 6SD                | 31.6            | 17.9                         | 11.9          |  |
| 164         | 2            | 395955 | 221350 | 0.0    | GL52 6SD                | 33.8            | 17.7                         | 11.8          |  |
| 165         | 2            | 395121 | 222686 | 3.5    | GL52 2NP                | 35.4            | 18.1                         | 12.0          |  |
| 166         | 2            | 395183 | 222799 | 0.0    | GL52 2NB                | 33.7            | 17.9                         | 11.9          |  |
| 167         | 2            | 395200 | 222829 | 0.0    | GL52 2NB                | 34.4            | 17.9                         | 11.9          |  |
| 168         | 2            | 395213 | 222847 | 1.5    | GL52 2AY                | 35.7            | 18.2                         | 12.1          |  |
| 169         | 2            | 395183 | 222858 | 0.0    | GL52 2AU                | 35.0            | 18.2                         | 12.0          |  |
| 170         | 2            | 395195 | 222885 | 0.0    | GL52 2AB                | 38.1            | 18.8                         | 12.4          |  |
| 171         | 2            | 395227 | 222872 | 0.0    | GL52 2AA                | 39.0            | 18.9                         | 12.5          |  |
| 172         | 2            | 395218 | 222939 | 0.0    | GL52 2AB                | 29.4            | 17.7                         | 11.7          |  |
| 173         | 2            | 395252 | 222929 | 0.0    | GL52 2AA                | 28.3            | 17.4                         | 11.6          |  |
| 174         | 2            | 395249 | 223022 | 0.0    | GL52 2AB                | 26.8            | 16.3                         | 10.9          |  |
| 175         | 2            | 395251 | 222732 | 0.0    | GL52 2NL                | 35.4            | 17.8                         | 11.9          |  |
| 176         | 2            | 395271 | 222773 | 0.0    | GL52 2NL                | 34.5            | 17.7                         | 11.8          |  |
| 177         | 2            | 395278 | 222788 | 0.0    | GL52 2NL                | 34.1            | 17.8                         | 11.8          |  |
| 178         | 2            | 395272 | 222823 | 1.5    | GL52 2AZ                | 34.1            | 18.2                         | 12.1          |  |
| 179         | 2            | 395292 | 222811 | 1.5    | GL52 2PN                | 31.8            | 17.8                         | 11.8          |  |
| 180         | 2            | 395323 | 222836 | 3.5    | GL52 2PN                | 30.4            | 17.8                         | 11.8          |  |
| 181         | 2            | 395351 | 222850 | 3.5    | GL52 2PN                | 28.9            | 17.6                         | 11.7          |  |
| 182         | 2            | 395386 | 222859 | 1.5    | GL52 2PP                | 26.5            | 17.1                         | 11.4          |  |
| 183         | 2            | 395416 | 222903 | 0.0    | GL52 2PW                | 33.4            | 18.6                         | 12.2          |  |
| 184         | 2            | 395448 | 222922 | 0.0    | GL52 2PW                | 32.6            | 18.3                         | 12.1          |  |
| 185         | 2            | 395457 | 222904 | 0.0    | GL52 2PN                | 31.0            | 18.0                         | 11.9          |  |
| 186         | 2            | 395437 | 222893 | 0.0    | GL52 2HP                | 30.2            | 17.9                         | 11.9          |  |
| 187         | 2            | 395516 | 222968 | 1.5    | GL52 2BY                | 32.9            | 17.9                         | 11.9          |  |
| 188         | 2            | 395550 | 222994 | 0.0    | GL52 2BZ                | 27.7            | 17.4                         | 11.6          |  |
| 189         | 2            | 395559 | 222958 | 0.0    | GL52 2BZ                | 25.0            | 16.8                         | 11.2          |  |
| 190         | 2            | 395636 | 223055 | 0.0    | GL52 3EP                | 23.5            | 16.1                         | 10.8          |  |
| 191         | 2            | 395714 | 223088 | 1.5    | GL52 3EP                | 24.6            | 16.4                         | 10.9          |  |
| 192         | 2            | 395758 | 223082 | 1.5    | GL52 2DJ                | 21.7            | 15.8                         | 10.6          |  |
| 193         | 2            | 395853 | 223178 | 1.5    | GL52 3EP                | 23.5            | 16.2                         | 10.8          |  |
| 194         | 2            | 395915 | 223249 | 1.5    | GL52 5DW                | 23.6            | 16.2                         | 10.8          |  |
| 195         | 2            | 395883 | 223208 | 1.5    | GL52 3EP                | 21.9            | 15.9                         | 10.6          |  |
| 196         | 2            | 395954 | 223309 | 1.5    | GL52 2DU                | 25.4            | 16.6                         | 11.0          |  |
| 197         | 2            | 395973 | 223295 | 1.5    | GL52 3EP                | 23.0            | 16.1                         | 10.7          |  |
| 198         | 2            | 396009 | 223322 | 1.5    | GL52 3EP                | 23.8            | 16.3                         | 11.0          |  |
| 199         | 2            | 396047 | 223373 | 1.5    | GL52 3EP                | 31.9            | 18.1                         | 12.0          |  |
| 200         | 2            | 396066 | 223362 | 1.5    | GL52 3EP                | 22.5            | 16.0                         | 10.8          |  |
| 201         | 2            | 396128 | 223430 | 1.5    | GL52 3EP                | 26.5            | 16.9                         | 11.3          |  |
| 202         | 2            | 396251 | 223555 | 1.5    | GL52 3EP                | 25.5            | 16.7                         | 11.2          |  |
| 203         | 2            | 396218 | 223491 | 1.5    | GL52 5ED                | 21.8            | 15.9                         | 10.7          |  |



| Receptor ID | Verification | x      | Y      | Height | Closest<br>address/post |                 | 9 Annual<br>entration |       |
|-------------|--------------|--------|--------|--------|-------------------------|-----------------|-----------------------|-------|
|             | Zone         | ^      |        | neight | code                    | NO <sub>2</sub> | <b>PM</b> 10          | PM2.5 |
| 204         | 2            | 396201 | 223518 | 1.5    | GL52 3EP                | 23.2            | 16.2                  | 10.9  |
| 205         | 2            | 396268 | 223530 | 1.5    | GL52 3EP                | 20.7            | 15.7                  | 10.6  |
| 206         | 2            | 396486 | 223639 | 1.5    | GL52 3DA                | 20.8            | 15.7                  | 10.6  |
| 207         | 2            | 396540 | 223662 | 1.5    | GL52 3DB                | 21.4            | 15.8                  | 10.7  |
| 208         | 2            | 396653 | 223717 | 1.5    | GL52 3DB                | 29.5            | 17.5                  | 11.7  |
| 209         | 2            | 392187 | 222049 | 1.5    | GL51 7TH                | 26.8            | 17.7                  | 11.7  |
| 210         | 2            | 392490 | 221878 | 1.5    | GL51 7TB                | 25.7            | 17.2                  | 11.5  |
| 211         | 2            | 392536 | 221855 | 1.5    | GL51 7TB                | 25.8            | 17.2                  | 11.5  |
| 212         | 2            | 392585 | 221837 | 1.5    | GL51 7TB                | 26.0            | 17.3                  | 11.5  |
| 213         | 2            | 392776 | 221809 | 1.5    | GL51 7AY                | 30.2            | 18.2                  | 12.0  |
| 214         | 2            | 392798 | 221834 | 1.5    | GL51 7AY                | 35.3            | 19.3                  | 12.7  |
| 215         | 2            | 392713 | 221806 | 0.0    | GL51 7AS                | 26.0            | 17.2                  | 11.5  |
| 216         | 2            | 392684 | 221810 | 0.0    | GL51 7AT                | 26.0            | 17.2                  | 11.5  |
| 217         | 2            | 392629 | 221823 | 1.5    | GL51 8NS                | 26.4            | 17.4                  | 11.6  |
| 218         | 2            | 392603 | 221831 | 1.5    | GL51 7TB                | 26.2            | 17.3                  | 11.5  |
| 219         | 2            | 392917 | 221841 | 1.5    | GL51 6QR                | 35.2            | 18.1                  | 12.1  |
| 220         | 2            | 393932 | 221637 | 1.5    | GL50 2TR                | 36.4            | 18.0                  | 11.9  |
| 221         | 2            | 393942 | 221655 | 1.5    | GL50 2HY                | 35.5            | 17.9                  | 11.8  |
| 222         | 2            | 393934 | 221604 | 1.5    | GL50 2TL                | 36.8            | 18.7                  | 12.3  |
| 223         | 2            | 393975 | 221659 | 0.0    | GL50 2HT                | 26.7            | 16.4                  | 10.9  |
| 224         | 2            | 394260 | 221789 | 0.0    | GL50 2HT                | 28.5            | 16.9                  | 11.3  |
| 225         | 2            | 394355 | 221753 | 0.0    | GL50 2QG                | 33.4            | 17.4                  | 11.6  |
| 226         | 2            | 392888 | 221866 | 0.0    | GL51 7AN                | 29.2            | 17.2                  | 11.5  |
| 227         | 2            | 392910 | 221854 | 1.5    | GL51 7AE                | 36.9            | 18.7                  | 12.4  |
| 228         | 2            | 392932 | 221871 | 1.5    | GL51 7AE                | 34.7            | 18.1                  | 12.0  |
| 229         | 2            | 392910 | 221884 | 1.5    | GL51 7AE                | 30.1            | 17.3                  | 11.6  |
| 230         | 2            | 392996 | 221920 | 1.5    | GL51 7AE                | 30.3            | 17.1                  | 11.5  |
| 231         | 2            | 393092 | 222036 | 1.5    | GL51 7AE                | 31.2            | 17.1                  | 11.6  |
| 232         | 2            | 393143 | 222083 | 1.5    | GL51 7HX                | 28.9            | 16.7                  | 11.3  |
| 233         | 2            | 393306 | 222175 | 1.5    | GL51 8QA                | 28.5            | 16.8                  | 11.4  |
| 234         | 2            | 393438 | 222318 | 0.0    | GL51 8NJ                | 29.6            | 17.6                  | 11.8  |
| 235         | 2            | 393494 | 222366 | 1.5    | GL51 8NQ                | 27.2            | 17.1                  | 11.5  |
| 236         | 2            | 393791 | 222585 | 1.5    | GL51 8NE                | 28.2            | 16.7                  | 11.3  |
| 237         | 2            | 393783 | 222613 | 1.5    | GL51 8NE                | 35.3            | 18.1                  | 12.2  |
| 238         | 2            | 393854 | 222754 | 1.5    | GL50 3RP                | 29.9            | 17.1                  | 11.5  |
| 239         | 2            | 393861 | 222768 | 1.5    | GL50 3RB                | 29.7            | 17.0                  | 11.5  |
| 240         | 2            | 393880 | 222809 | 1.5    | GL51 8NZ                | 28.7            | 17.2                  | 11.6  |
| 241         | 2            | 393913 | 222853 | 1.5    | GL51 8PA                | 27.1            | 17.0                  | 11.4  |
| 242         | 2            | 393865 | 222830 | 1.5    | GL51 8NE                | 28.6            | 17.3                  | 11.6  |
| 243         | 2            | 393883 | 222855 | 1.5    | GL51 8NE                | 30.1            | 17.7                  | 11.8  |
| 244         | 1            | 394179 | 222979 | 1.5    | GL51 8LN                | 34.5            | 18.5                  | 12.1  |
| 245         | 1            | 394170 | 222975 | 1.5    | GL51 8LN                | 33.8            | 18.3                  | 12.1  |
| 246         | 2            | 391663 | 221919 | 1.5    | GL51 6BW                | 27.6            | 17.3                  | 11.4  |
| 247         | 2            | 391500 | 221823 | 1.5    | GL51 6BL                | 22.7            | 16.3                  | 10.7  |
| 248         | 2            | 391296 | 221888 | 1.5    | GL51 0UA                | 28.0            | 17.1                  | 11.2  |
| 249         | 2            | 391516 | 221929 | 1.5    | GL51 0FH                | 31.7            | 18.3                  | 11.9  |